

ReadSoft Service Bus 2-4

SDK
October 2011 – ReadSoft AB

ReadSoft AB (Head office) | Södra Kyrkogatan 4 | SE-252 23 Helsingborg | Sweden | Phone: +46 42 490 21 00 | Fax: +46 42 490 21 20
ReadSoft Ebydos AG | Walther-von-Cronberg-Platz 2 | 60594 Frankfurt | Germany | Phone: +49 69 90 43 260 | Fax: +49 69 9043 2613
info@readsoft.com | www.readsoft.com

© ReadSoft AB (publ). Licensees may make a number of copies, in paper form or in electronic form, of this material,
corresponding to the number of allowed concurrent users of the software. The material may only be used in conjunction with
operation of the software, by designated users, and in accordance with the Software License Agreement accompanying the
software. Any other use, including but not limited to modification, translation and reproduction, and distribution is strictly
forbidden.

The contents of this document are subject to change without notice.

ReadSoft is a registered trademark of ReadSoft AB. Other product and company names herein may be the trademarks or
registered trademarks of their respective owners.

Questions or comments about this document may be emailed to documentation@readsoft.com.

06102011.1013

mailto:documentation@readsoft.com�

Contents

About the SDK .. 1

System requirements ... 2

Concepts .. 3
System overview ..3
Design goals ..4
Connecting to the service bus ...5
RSB services ..7
Document services ...8
Data services ..9
Adapters ... 10

Getting started .. 11
Developing adapters .. 11
Setting up the environment ... 13
Creating an adapter project ... 14
Installing an adapter ... 16
Manually registering an adapter .. 18
Adapter registration tool ... 19
Debugging an adapter .. 20
Simulators ... 21
SDK examples ... 21

Working with services .. 23
Adding an adapter service .. 23
Adding service properties .. 25
PublicProperty examples .. 28
Validating adapter properties .. 28
Adding special configuration behavior ... 29
Using the logging service .. 31
Working with adapter properties .. 32
Creating a mappable target document service .. 34
Creating a Map designer Function .. 39
Creating a target document service .. 41
Creating a source document service ... 43
Creating a provider data service .. 46
Creating a consumer data service .. 49
Working with service extensions ... 53
Troubleshooting ... 53

ReadSoft Service Bus SDK | page 1 of 57

About the SDK

This help file describes the ReadSoft Service Bus (RSB) Software Development Kit (SDK).
The SDK contains:

 Software required develop adapters that interface with RSB to publish and subscribe
documents to and from the bus using a small library of helper classes.

 Assemblies required to interface with the bus.

 Example projects.

 API Help.

You can install the SDK as a component which is found on the main RSB installation.

The documentation uses C# as the programming language, but it is possible to use any CLS-
compliant .NET language, such as VB.NET.

ReadSoft Service Bus SDK | page 2 of 57

System requirements

The following is required when building the software that will communicate with RSB.

 Microsoft .Net Framework 4

 Visual Studio 2010 SP1 or later

To be able to test your adapter you also need:

 Microsoft SQL Server (Microsoft SQL Server Express is supported)

ReadSoft Service Bus SDK | page 3 of 57

Concepts

System overview
RSB utilizes the following concepts:

 Source system—a system that sends documents, such as DOCUMENTS, INVOICES etc.

 Source system—a system that sends documents, such as DOCUMENTS, INVOICES etc.

 Target system—a systems that receives documents, such as an ERP system, INVOICE
COCKPIT, INVOICEIT etc.

 Adapter—provides additional features/capabilities to the bus and the systems that use it.
To create an interface between a source and target system, for example, you need to use at
least two adapters: one adapter (source adapter) provides an interface between RSB and
the source system, and one (target adapter) that connects RSB to the target system.
Adapters typically use the Microsoft Windows Communication Framework (WCF) to
communicate with other system components.

 RSB clients—provide connectivity between source systems and RSB. Typically, these are
lightweight software components that plug into the source system. One example is the
RSB INVOICES plug-in.

 ReadSoft Service Bus—provides a framework that unites the parts to form a complete
system.

 Document Service—defines activities between a source system and one or more target
systems for transferring documents.

 Data Service—defines activities between a provider system (source system) and one or
more consumer systems (target systems) to enable the use of data entities.

ReadSoft Service Bus SDK | page 4 of 57

Design goals
The design goal of the SDK is to make it as simple as possible to create adapters for the
ReadSoft Service Bus in order to extend the capabilities of ReadSoft Solutions. RSB is
designed for component reuse, and should provide basic functionality for the system
integration while maintaining scalability.

Extending the bus capabilities

Adapters are used to extend the capabilities the bus can provide. From a deployment
perspective, an adapter is a package of functionality that can be installed and registered in the
RSB runtime. Through adapters, the user can configure document and data services by
creating activities to accomplish specific behavior.

The functionality implemented in an adapter is found as one or more adapter services. Each
adapter service defines two sets of properties: one that is related to the system it can connect
to (adapter properties) and one that is specific for the adapter service (adapter service
properties). Adapter properties are common to all adapter services, whereas adapter service
properties are specific for all activities that use the service.

ReadSoft Service Bus SDK | page 5 of 57

Connecting to the service bus
To be able to make use of the services provided by the bus, you need to have a component
(client) that connects the external system to the service bus. The client uses the address of the
RSB Configuration Service to make the connection. The configuration service provides a list
of all the document and data services that are available in the bus and have been configured.
You can select which type of service you want to use from the list. This is done via a
document service (service configuration), which contains an ID that you use when you call
the service. This can be done programmatically if you know what service to use and it will not
change or require user input, which is the case for DOCUMENTS and INVOICES.

Configuration

First, you need to know the computer name where RSB is installed and the web service port.
It is specified in the RSB Administration Settings view. The default port is 9103.

With SDK helper functions you can create URLs for calling RSB.

With the repository service you can get the available document services from RSB.

The code below demonstrates how to retrieve all the active-service configurations.

ReadSoft Service Bus SDK | page 6 of 57

try

{

 string repositoryUri = ExternalClientHelper.GetRepositoryUri("RSB_computer_name",

"9103");

 var proxy = ProxyHelper.CreateProxy<IRepository>(repositoryUri);

 ServiceConfigurationList serviceConfigurationList =

proxy.GetActiveRoutesByAdapterID(adapterID);

}

finally

{

 var channel = proxy as ICommunicationObject;

 channel.CloseConnection();

}

When you have this information, you are prepared to call the service.

Transfer document

To transfer a document via RSB using .NET, follow these guidelines:

 Create the document you want to send. Normally this is a XML document, but whatever
the case, the source adapter should be notified.

 To call the document service on the RSB you need to know:

• The address to RSB (RSB host name and web port). This is used to generate a proxy.

• The name of the service you want to call.

 Via the address and the service name you can create the proxy for the service.

 In the call to the service, you pass the document and the ID of the document service.

public static Result SendDocumentSynchronous(GenericDocument document, Guid

adapterServiceId,

ReadSoft Service Bus SDK | page 7 of 57

Guid serviceConfigurationID)

{

string configurationUri = string repositoryUri =

ExternalClientHelper.GetRepositoryUri("RSB_computer_name", "9103");

 IGenericDocumentSource proxy = GetSourceAdapterProxy(configurationUri, adapterServiceId);

 try

 {

 return proxy.ProcessDocumentSynchronous(document, serviceConfigurationID);

 }

 finally

 {

 var channel = proxy as ICommunicationObject;

 channel.CloseConnection();

 }

}

RSB services
An adapter can be seen as a container of specific functionality. To make use of this
functionality, you set up different RSB services (for example, a document-routing service).
The service settings are built on different activities which the user adds to accomplish a task.
Adding new activities is done via the Admin page. During operation, the service executes,
based on the defined activities, and calls the adapter service.

For example, if you have an adapter that knows how to connect to an SAP system, and you
want to create two document services that support document transfer (one for the production
system and one for the test system). The same adapter is used to communicate with both
systems, but the activity settings are unique for each document-routing service.

RSB utilizes two main types of services: document services and data services. Together with
installed adapters, you can configure specific services, based on these types, to provide a
solution for a specific customer problem.

ReadSoft Service Bus SDK | page 8 of 57

Document services
Document services are services that are normally related to a business process and are used
for transferring documents from one system to another. A document-routing service is a
standard feature included in RSB. This service is installed automatically and appears as an
adapter in the admin application

The service bus can use source adapters to handle specific requirements that are related to the
type of system that calls the bus. It can, for example, transform documents into a uniform
format or handle specific interfaces or protocols. This could be done within the connecting
system, but source adapters provide the ability to solve specific requirements in the context of
RSB, and that is one of the reasons that source adapters exist.

The bus contains a document-routing service.

Target system adapters are called by the service that has been configured. This means that the
target must implement a specific interface.

Calls to the document-routing service pass the document object, GenericDocument. Apart
from the document content, which is in the form of an XML stream, the GenericDocument
contains:

ReadSoft Service Bus SDK | page 9 of 57

 an ID of the document

 information about the sending system

 basic document properties

 a list of attachments to the document.

For more detailed info about the Document object, see RSB API documentation.

Data services
Unlike document services, which handle documents, data services handle pure data entities,
such as master data entities. Data services cannot connect directly to a business process.
Instead, the source system (provider), that has the original data entities, is called by a system
that wants to use it.

In RSB, the master-data service is included as a standard feature. Naturally, this can be
extended with additional adapters.

The consumer can use either a generic query interface provided in the framework or expose
its own domain-specific interface. The consumer service translates these services to generic
calls exposed by IDataEntityChannel which is implemented by the data service which is
responsible for the calls based on the service configuration. Different providers are called to
translate the call to fit the provider system.

Some of the data entities can be cached in the bus to prevent performance issues when the
provider system has a slow response time. When you create your own adapter, you can
implement caching capabilities for your own data entities.

ReadSoft Service Bus SDK | page 10 of 57

Adapters
There are different types of adapters, but the most common are source and target adapters.
Adapters are used to create connectors that integrate two or more systems. When you create a
new adapter, you normally start by inheriting a base class that provides base functionality.

To integrate two systems you need at least two adapters: one that provides an interface to the
sending system (source) and one connects to the receiving system (target).

Source adapters

 Provide domain-specific services that the external system can use.

 Receive/retrieve documents from the external system.

 Transform documents to RSB’s internal format. This can also be done on the client side if
necessary.

 Call the generic document service provided by the bus.

Target adapters

 Transform documents from RSB’s internal format to the target-system format.

 Pass documents to the target.

 Return status messages to the document-routing service.

ReadSoft Service Bus SDK | page 11 of 57

Getting started

Developing adapters
Adapters are an important concept within the ReadSoft Service Bus. Adapters extend the
capabilities of RSB. An adapter can be developed by anyone; it is intended for developers in
the solution labs, subsidiaries, and partners.

The SDK includes tools to create installation packages for adapters. The adapter installation
uses the NSIS installation framework to get a quick and flexible installation process. To be
able to use an adapter, the required files must be installed in the host system and the adapter
must be registered in the service bus configuration. The installation package generated by the
tools in the SDK takes care of both these things.

Adapter communication

An adapter communicates with the bus through services. These services are one part of the
RSB API. The other part is classes from which the adapter classes are inherited.

ReadSoft Service Bus SDK | page 12 of 57

The RSB services that the service bus exposes are something that the adapter developer uses
to accomplish the desired tasks. An example of an RSB service is ProcessDocument, but there
are also services for logging, event handling etc.

RSB also defines a set of interfaces that an adapter can implement. Some of these are
mandatory and must exist to be able to work together with the bus while other interfaces are
optional that the developer can choose to implement to achieve certain functionality. Each
adapter that implements an adapter interface will be called by the bus when certain events
occur.

Hosting adapters

RSB supports two ways to host an adapter: either you let the service bus host it, or you
implement a Windows service--or any other kind of host--you want to host it for you. It is
preferred to let the RSB host the adapter, but there are situations where you want to host it
using a Windows service. For example, the ReadSoft solution for SAP uses that adapters are
hosted by a separate Windows service in order to run them in a 32-bit environment, since this
is a limitation in the toolkit used to access the SAP system).

When an adapter is hosted by the RSB windows service host, it is hosted in a separate
application domain (AppDomain), which is isolated from the rest of the service bus.
AppDomain has a global mechanism for logging, which is automatically connected to the
RSB logging service.

ReadSoft Service Bus SDK | page 13 of 57

Setting up the environment
Setting up the database

RSB uses a database to store configurations and log data. Microsoft SQL Server or Microsoft
SQL Server Express are supported. If you have already installed RSB, the database is already
configured.

Setting up IIS

The RSB Administration page can be hosted by IIS. If you intend to develop for an
environment in which the RSB Administration page will be hosted by IIS, you must have IIS
installed and configured (See the installation guide for more information.). The easiest way to
accomplish this is to install RSB with the IIS option, referring to the troubleshooting section
of the installation guide, if you have any problems.

Visual Studio project template

The SDK includes a project template for Visual Studio that makes it easier to start developing
adapters. To start a project:

1. Navigate to C:\Program Files\ReadSoft\RSB SDK\SDK\Visual Studio Templates.

2. Open RSB Adapter template.vsi and follow the wizard that appears.

If you have Visual Studio open during the template installation, you must restart it before the
template appears in the Templates list. You find the template in Visual C# >> Windows.

ReadSoft Service Bus SDK | page 14 of 57

Creating an adapter project
This topic demonstrates how to create an adapter project and create, install, and register an
adapter. More details on the different types of adapter are covered later in the document.
Regardless of the adapter type, they are basically handled the same way in the administration
interface.

1. Start by creating a new project based on the RSB Adapter template.

2. This template creates a C# project which includes the basic structure required to develop
an adapter for RSB.

ReadSoft Service Bus SDK | page 15 of 57

3. Adapter.cs contains the AdapterProperties class for your adapter. This is used when
setting up the system that the adapter will connect to. All basic references are also
configured for your project.

4. Build the solution and make sure that all files are compiled correctly.

ReadSoft Service Bus SDK | page 16 of 57

5. The project template has a post-build step which creates the adapter installation for the
adapter. This is done automatically after you build the solution. See Manually registering
an adapter for more information.

Installing an adapter
Before activities in an adapter can be used, it must be installed and registered in the RSB
repository. After that the user can use it to configure a document or data service. If a source
activity in an adapter is map able, it has a RSB schema. The schema is used for:

 Defining the content (fields) of the document which is used for tracking information and
routing purposes.

 Defining a map from source fields to target fields.

Translation of incoming documents to a generic format that is used within the bus

You install the adapter using the installation package (described in the previous section). Go
the folder where you developed the adapter, navigate to: \bin\Debug\RSB My
Adapter_Setup.exe, and start the installation.

ReadSoft Service Bus SDK | page 17 of 57

After the adapter is installed, it is automatically registered within RSB, and you can find it on
the RSB Administration page.

 SDK Version - The version of the SDK that was used to developed the adapter. This is set
automatically and is used to check the compatibility when upgrading.

 Adapter version - The version of the adapter which you set yourself.

 Adapter services - Lists all the services that are hosted within the selected adapter. These
services are used when setting up the document and data services. If you have not created
an adapter service yet, this list is empty.

Note that when you change the adapter later, you perform the same procedure outlined above;
however, if you have configured a service that is using the adapter, it must be aware that the
service is deactivated before the new version is installed.

ReadSoft Service Bus SDK | page 18 of 57

Manually registering an adapter
A post-build step is included in the project template for the RSB adapter. This step
automatically calls a utility that creates an installation package for the adapter. This section
describes the process, in case you want to create the installation manually.

AdapterInstallationCreator is found in the bin folder of the SDK and is used to create an
installation package that installs and registers the adapter in RSB. You can run this program
and at the command prompt, using parameters to control the output.

AdapterInstallationCreator.exe [AdapterAssemblyFilePath]
[ResultingSetupExeFilePath] [AdditionalFilePath1] [AdditionalFilePath2]
[AdditionalFilePath..N]

AdapterAssemblyFilePath = Full file path to the adapter assembly dll

ResultingSetupExeFilePath = Full file path to the setup exe file that will be created

AdditionalFilePath(s) = Full file path(s) of other files (besides the adapter assembly) that
should be included in the installation. May contain wildcard character.

Example1
AdapterInstallationCreator.exe "c:\myadapter.dll"
"c:\myadapterSetup.exe"

Example2
AdapterInstallationCreator.exe "c:\myadapter.dll"
"c:\myadapterSetup.exe" "c:\myfile1.xml" "c:*.dll"

 You must run the AdapterInstallationCreator from the SDK bin folder where it has access to
the necessary DLLs. You must give the full path to the files you want to use.

If you create your own installation program, you can register your adapter with the following
tool:

%RsbSdkInstDir%\Bin\ReadSoft.ServiceBus.SDK.AdapterRegTool.exe

Usage:

 ReadSoft.ServiceBus.SDK.AdapterRegTool.exe [/silent] /register [adapter file path] [log
file path]

 ReadSoft.ServiceBus.SDK.AdapterRegTool.exe [/silent] /unload [adapter GUID] [log file
path]

ReadSoft Service Bus SDK | page 19 of 57

 ReadSoft.ServiceBus.SDK.AdapterRegTool.exe [/silent] /unregister [adapter GUID] [log
file path]

 ReadSoft.ServiceBus.SDK.AdapterRegTool.exe [/silent] /check [adapter GUID] [log file
path]

Adapter registration tool
When your adapter is ready for serious testing, we recommend installing the adapter before
debugging for the best results. However, if you rebuild the adapter frequently and installing
the adapter over and over is too time consuming, you can simply register the adapter using the
Adapter registration tool (also described above in Manually registering an adapter).

Add the tool to Visual Studio using the following settings:

Command

%RSBSDKInstDir%\Bin\ReadSoft.ServiceBus.SDK.AdapterRegTool.exe

Arguments

/register "$(BinDir)$(TargetName)$(TargetExt)"

Initial directory

$(BinDir)

Then to register your adapter, you can simply select your assembly and choose Register
adapter from the Tools menu in Visual Studio.

ReadSoft Service Bus SDK | page 20 of 57

Debugging an adapter
When you debug an adapter, you generally go through this process:

1. Write the code.

2. Build the solution.

3. Install adapter. You must install the adapter (recommended) or register the adapter using
the tool described below.

4. Debug the adapter. Since the adapter is hosted externally and is running in a framework
that calls your code, you must attach your debugger (Tools > Attach to process) to the
RSB Windows service.

ReadSoft Service Bus SDK | page 21 of 57

In order to see the process, ReadSoft.ServiceBus.WindowsService.Host.Exe, you must
select Show processes from all users and Show processes in all sessions. You must also
specify Managed code in the Attach to setting. In Visual Studio 2010, specify Managed
(v4.0) code in the Attach to setting.

Anytime you change your adapter code and rebuild, you must repeat step 3.

Simulators
When developing an adapter, it is good idea to develop a simulator that emulates the system
the adapter will connect to. A simulator is a helpful tool for developing and testing the
adapter. The RSB installation has a couple simulators which you can use to see what sorts of
functions a simulator performs. The SDK also includes an example of a data-services
simulator.

SDK examples
The SDK contains examples that describe important design concepts. These examples are
used in the coming sections of this document. Each example project automatically creates an
installation program for the adapter in a post-build step.

ReadSoft Service Bus SDK | page 22 of 57

Document-services example

 DocumentSourceAdapter—an example of an adapter with a source-adapter service that
receives calls from an external client, such as a DOCUMENTS plugin, and sends the data
to the bus.

 FileTargetAdapter—an example of an adapter with a target-adapter service that writes
an incoming document to a file.

 FileTargetAdapterPropertiesEx— an example of an adapter with a target-adapter
service that writes an incoming document to file. The adapter service contains examples
of service properties.

 FileTargetAdapterWithLog— an example of an adapter with an target adapter service
that writes an incoming document to file. The adapter service contains examples of
service properties and shows how to log errors for end-user and debugging purposes.

 AsynchronousFileTargetAdapter – an adapter that only works with asynchronous
document transfer. The adapter service implements a special function for retrieving the
current state of a document.

Data services example

 ChartOfAccountsConsumer—an example of a data-entity consumer that uses the
ChartOfAccount data entity.

 ChartOfAccountsProvider—an example of a data entity provider that uses the
ChartOfAccount data entity.

 DataEntityClientSimulator—an example of a client application that sends query to
ChartOfAccountsConsumer.

 Entities— an example that illustrates data entities. To avoid duplicate code when creating
a data-entity consumer and data-entity provider for the same data-entity type, we
recommend moving the entity to a separate assembly that is shared between consumer and
provider.

 TestChartOfAccountsProvider—This example contains two tests: a unit test that tests
the ChartOfAccountsProvider, and an integration test that calls RSB and the installed
ChartOfAccountsConsumer and ChartOfAccountsProvider.

ReadSoft Service Bus SDK | page 23 of 57

Working with services

Adding an adapter service
An adapter’s functionality is implemented as an adapter service. An adapter service provides
functionality via the bus or an external system. The SDK aids this task with a number of item
templates. The following procedure assumes that you have already created an RSB Adapter
project from the included template.

1. In your adapter project, right-click the project and select Add > New item.

2. Select the RSB in the Categories list to display the templates you can choose. For this first
exercise, we will use the Document target service template.

3. Give the adapter service an appropriate name. The name is used to create the default
names for the auto-generated classes.

ReadSoft Service Bus SDK | page 24 of 57

4. Click Add to create a new file containing default classes.

5. The file contains two classes: the class for the service properties and the class that
implements the interface required for the target adapter. Both these classes are named
using the name given in the template.

Now you can build the solution and try to install the new version of the adapter. You should
see the adapter service for you adapter on the Adapters page in the Administration UI.

ReadSoft Service Bus SDK | page 25 of 57

Adding service properties
PublicProperty

You can use PublicProperty to create an adapter property and display it in the RSB user
interface.

Syntax

PublicProperty(string name, string description,
AdapterPropertyBase.customType customType, string category, int order)

Part Type Description

name String A descriptive name for the property.

description String A description of the property. The description appears in the tooltip of the
property control.

customType Custom Determines which controls are available to connect to the property.

 FilePath – This type is not used at this time.

 Filters – This is a general property that is automatically added to all target

ReadSoft Service Bus SDK | page 26 of 57

adapters, so there is no need to implement it.

 GenerateValue – Displays a text box and a button.

When this type is used, you should implement the interface,
IPropertyConfigService. IPropertyConfigService exposes the function,
ConfigureProperty, which is called when the button is clicked. You can use
the function to generate a value, for example, or perform other operations.

 Normal (default) – Displays a variety of controls depending on the
PublicPropertyAttribute type. Use the table below to determine which
control is displayed:

Type Control

String Text box

Boolean Check box

Enum Combo box

TimeDate Date picker

Int Spinner control

 Password – Displays a password text box.

 Scheduler – Displays controls for scheduling master-data activities.

 List – Displays list of values that can be populated in the adapter code.

category string The name of the category you want the property reside in.

When you have many properties, you can use the category to

ReadSoft Service Bus SDK | page 27 of 57

organize the properties into different groups (categories). Each
category appears as an according control in the user interface.

order integer The order in which you want the control to appear in relation to other
properties within the same category.

Examples

The following code excerpt creates a property named CarColor. Because the property is a
string, a text box will be displayed. The name parameter creates a label above the text box,
“Car color”, and when the mouse moves over the text box, "The color of the car" will be
displayed in the tooltip.

[PublicProperty("Car color", "The color of the car")]
 public string CarColor = string.Empty;

The following code produces a property which includes the Folder for SAP structure files box
and the Configure button as seen in the picture that follows:

[PublicProperty("Folder for SAP structure files", "Folder used to store
proxy files from SAP", AdapterPropertyBase.CustomTypes.GenerateValue,
"1. Configuration",2)]
 public string ProxyFileFolder;

See more PublicProperty examples from the example projects.

ReadSoft Service Bus SDK | page 28 of 57

PublicProperty examples
The code below references two example projects, FileTargetAdapter and
FileTargetAdapterEx, and demonstrates how to extend FileTargetAdapter with two new
properties: one that defines where to save the attachments files, and one that defines an XSLT
file transforms the XML document before writing the file.

The code also demonstrates how to group the properties into groups in the UI. Groups make it
easy for users to find properties. To create a group, add an extra string after the description (
"1. Folders" and 2. Mapping" below). This string gives the name of the group and will be
sorted alphabetically. To specify the order of the groups, start the string with a number as
shown in the example.

The order of properties within a group are sorted by adding a sequence number after the group
name.

public class FileTargetAdapterProperties : TargetServiceProperties

 {

 [PublicProperty("TargetFolder", "Folder where XML files are
written.", "1. Folders", 1)]

 public string TargetFolder = @"C:\FileTargetAdapterTargetFolder";

 [PublicProperty("AttachmentFolder", "Folder where attached files
are written.", "1. Folders", 2)]

 public string AttachmentFolder =
@"C:\FileTargetAdapterTargetFolder\Attachments";

 [PublicProperty("Transformation file name",
"TransformationFileName xslt", "2. Mapping", 2)]

 public string TransformationFileName = "transform.xsl";

Validating adapter properties
The IValidation interface is implemented via the target adapter base class. It is used to test
adapter properties for errors before they are used. This interface defines three operations:

 The PerformValidation function, which you customize to detect errors in the settings of
the adapter.

 The RouteActivated method, which notifies your adapter of new settings.

ReadSoft Service Bus SDK | page 29 of 57

 The RouteDeActivated method, which notifies your adapter that the service is not active
anymore.

Whenever a service is activated, the validation service is triggered and the PerformValidation
function is called. If all of the activities that configure the service validate without problems,
the RouteActivated method is called. When a route is deactivated, the RouteDeActivated
method is called.

The base class provides empty methods. To implement a specific behavior, you must
override the following methods:

virtual protected bool PerformValidation(T serviceProperty, TU
adapterProperties, Guid activityID, out Dictionary<string, string>
errorMessages)

virtual protected void RouteDeactivated(T properties, TU
systemProperties)

virtual protected void RouteActivated(T properties, TU
systemProperties)

 PerformValidation – Called by the bus when a service is validated. If false is returned,
the validation fails and the service cannot activate.

 serviceProperties –Specifies the class which defines the settings of your adapter service,
which are used when configuring the activities within a service.

 adapterProperties – Specifies the class which defines the settings of your adapter, which
are used to configure the system entities.

 activityID – The unique ID of the activity to validate.

 errorMessages – Return parameter which contains error messages from the validation (if
any).

Adding special configuration behavior
The IPropertyConfig interface is implemented via the target adapter base class and is used to
get special configurations needed for one or more properties. This interface defines one
operation ConfigureProperty.

virtual protected string ConfigureProperty(Activity activity,T serviceProperties, TU
adapterProperties)

ReadSoft Service Bus SDK | page 30 of 57

 ConfigureProperty – Called by the bus when a service is validated. If false is returned,
the validation fails and the service cannot activate.

 serviceProperties –Specifies the class which defines the settings of your adapter service,
which are used to configure activities within a service.

 adapterProperties – Specifies the class which defines the settings of your adapter, which
are used to configure the system entities.

 activity – The activity that to configure.

 errorMessages – Return parameter which contains error messages from the validation (if
any).

Example

For the INVOICE COCKPIT connector, we need to retrieve structures that are used in the
interface. To accomplish this we request the structures from SAP. The property is tagged with
AdapterPropertyBase.CustomTypes.GenerateValue.

[PublicProperty("Folder for SAP structure files", "Folder used to store
proxy files from SAP", AdapterPropertyBase.CustomTypes.GenerateValue,
"1. Configuration",2)]
public string ProxyFileFolder;

The code above displays the following result in the UI.

When the user presses the Configure button, ConfigureProperty is called, and the adapter
sets and returns the configuration object.

ReadSoft Service Bus SDK | page 31 of 57

Using the logging service
The ReadSoft Service Bus has a central logging service called LogBookManager. This should
be used by the adapters for logging functionality. It is exposed via WCF endpoint.

Connecting to the WCF endpoint and adding log entries is easy, when using the RSB SDK, as
long as the adapter is hosted by RSB.

 The rest of this section only deals with adapters that are hosted by RSB.

In order to write to the RSB logging service, the adapter should use the static methods in
ReadSoft.ServiceBus.LogServiceProxy.Log. The following methods are available, each with
several overloads:

 LogError – Logs an error message.

 LogException – Logs and exception.

 LogMessage – Logs and general message.

 LogNewAlert – Add an alert to the log.

The service has static help methods that hide the details on the service call when an
administrator needs to take action on an error. These methods are found in the
ReadSoft.ServiceBus.LogServiceProxy.dll.

The following methods can be used for different logging purposes:

public static void LogError(Guid objectid, string routeName, object callingclass, string
message)

public static void LogError(Guid objectid, string routeName, string classname, string
message)

public static void LogException(Guid objectid, Exception error)

public static void LogException(Guid objectid, Exception error, string additionaltext)

public static void LogMessage(Guid objectid, object callingclass, string message,
LogbookEntry.LogLevel logLevel)

public static void LogMessage(Guid objectid, string classname, string
message,LogbookEntry.LogLevel logLevel)

public static bool LogNewAlert(TrackingAlert alert)

public static void LogNewAlert(Guid instanceId, Guid routeId,
TrackingInfo.TrackingAlertsType alertType, string description, string source)

ReadSoft Service Bus SDK | page 32 of 57

Example 1

LogMessage(documentInfo, MethodBase.GetCurrentMethod(), " entered");

Example 2

LogException(documentInfo, ex);

LogMessage(documentInfo, MethodBase.GetCurrentMethod(), " exiting after
exception");

Working with adapter properties
Adapter properties enable the configuration of a service within the bus. The properties are
stored and managed within the bus. There is usually no need to store external properties
(example: configuration files) for adapters, unless they are shared among many instances of
an adapter. The properties are controlled by attributes that tell the UI how to display them. In
the sample below, we add additional properties to the adapter from the previous section, and
show how to control the property via the attributes that are built into RSB.

There are two categories of properties within an adapter:

 Adapter system properties (adapter properties) - common for all activities that are created
by the adapter service. You find these settings under the System node on RSB’s
Administration page.

 Adapter service properties (service properties) - specific for the adapter service (an
instance of the adapter) and are used while configuring the service. These settings are
displayed when you select an activity in the design area on RSB’s Administration page.

Adapter properties

Adapter properties are properties that are common for all activities and are created from the
adapter service.

 public class AdapterProperties : IAdapterProperties

 {

 public AdapterInformation GetAdapterInfo()

 {

ReadSoft Service Bus SDK | page 33 of 57

 return new AdapterInformation

 {

 RootGuid = AdapterHelper.Rootguid(),

 Name = "My RSB Adapter1",

 Description = "The My RSB Adapter1 adapter was generated
for you," +

 "from a Visual Studio template.",

 AdapterVersion = AdapterHelper.AdapterVersion()

 };

 }

 [PublicProperty("MySystemProperty", "Sample system property for
the My_RSB_Adapter1 adapter.")]

 public string MySystemProperty = @"my connectionstring";

 }

Adapter service properties

These properties are specific for the adapter service and are used when configuring the
service.

 public class SubmitInvoiceServiceProperties :
TargetServiceProperties
 {
 [PublicProperty("StringProperty", "Sample string property for the
SubmitInvoice adapter service.")]
 public string StringProperty = @"StringProperty";
 public override string Name()
 {
 return "SubmitInvoice";
 }
 public override Guid ID()
 {
 return new Guid("d28c6cec-f8ac-4481-8326-4cb1f913036c");
 }

ReadSoft Service Bus SDK | page 34 of 57

 public override string Description()
 {
 return "SubmitInvoice does something.";
 }
 public AdapterService.ServiceTypes Type()
 {
 return AdapterService.ServiceTypes.TargetAdapter;
 }
 }

Properties have a PublicProperty that declares how RSB exposes it for the user. In the sample
above, StringProperty is exposed in the UI as “StringProperty” with a description “Sample
string property for the SubmitInvoice adapter service.". For a full description on how to use
the attributes see Attributes and PublicPropertyAttribute.

Creating a mappable target document
service
Introduction

When creating a target service it is a good idea to make it mappable, meaning the RSB
administration user can use Map designer to select fields from the source and map them to
fields for the target. The mapping from a source field to a target field is done by drag-and-

ReadSoft Service Bus SDK | page 35 of 57

drop.

In the upper left corner the Function can be seen. This function is the type of mapping that is
applied. In most cases just copy value from source field to target field, but the Function can be
either one of the pre-installed Functions, or you can develop your own using a Visual Studio
template.

How to create the Adapter

1. Create a new adapter project.

ReadSoft Service Bus SDK | page 36 of 57

2. And add a Mappable document target service.

After you add the target service via the template, Mappable document target service, a file
containing following classes is generated:

ReadSoft Service Bus SDK | page 37 of 57

public class MyDocumentTargetServiceServiceProperties :
MappableTargetServiceProperties
public class MyDocumentTargetServiceService :
GenericMappableDocumentTargetService<MyDocumentTargetServiceServiceProp
erties, AdapterProperties>

Classes

 MyDocumentTargetServiceServiceProperties – implements settings for the adapter
service.

 MyDocumentTargetServiceService – implements the actual services that submit the
document to the target system and describes the schema.

MyDocumentTargetServiceService implements a stub of a very simple target adapter that
processes documents. It inherits the abstract base class,
GenericMappableDocumentTargetService, which provides basic functionality and gives
directives about what to implement.

Mandatory

The adapter service class inherits all mandatory interfaces required for a mappable target
adapter service via the base class, GenericMappableDocumentTargetService.

The methods that are mandatory to implement are:

• SubmitGenericDocument
• CreateMappingSchema

SubmitGenericDocument

This method is called by the document service. Since we are implementing a mappable target
adapter the xml in the GenrericDocument is mapped by RSB according the the user mapping
set up in Map designer. If you work with the xml this of course possible. Then connect to the
target system and send document.

 serviceProperties – holds the properties for the adapter service

 systemProperties - holds the properties for the adapter system

 Document – holds the document

 serviceConfigurationID – the service configuration for the document service

ReadSoft Service Bus SDK | page 38 of 57

CreateMappingSchema

Implement this method to describe the RSB schema for the target. In some cases you might
want to connect to your target and dynamically create the schema. In other cases you can
statically create the RSB schema or you might want to import an XML schema.

If you want to import a XML schema, you can use the class, XmlSchemaParser, implemented
in the SDK assembly ReadSoft.XML.Mapping.Core.dll. This import does not support all
types of XML schemas, only very simple schemas can be imported.

An instance of the class, Schema, is returned by the CreateMappingSchema method. Schema
can contain groups and fields. Schema is itself also a group, and as such it has a System name
and d Display name. A group in Schema can also have groups and fields and has a System
name and a Display name.

If you want a group to be dynamic, meaning that a Map designer user can create fields in the
group dynamically, set the property AllowsDynamicFields to true.

Here is an example of a target activity schema:

var schema =
new Schema
{
 SystemName = "Document",
 DisplayName = "Document",
};
schema.Groups =
new SchemaGroupList
{
 new SchemaGroup
 {
 SystemName = "ProcessDirectorMetaData",
 Fields =
 new SchemaFieldList
 {
 new SchemaField
 {
 SystemName = "DocumentType"
 },
 new SchemaField
 {
 SystemName = "Origin"
 },
 new SchemaField
 {
 SystemName = "MappingId"

ReadSoft Service Bus SDK | page 39 of 57

 }
 }
 },
 new SchemaGroup
 {
 SystemName = singleItemNodeId,
 AllowsDynamicFields = true
 }
};

RSB schema node attributes

Each node in a schema (such as a field, group, table or even the schema itself) can be given
static attributes that are always there.

These attributes have names and values, and are realized as regular XML attributes after
mapping.

To add an attribute, just create an instance of SchemaNodeAttribute and add it to the node’s
Attributes list of attributes. For example, in order always to have a certain query string ready
when a document arrives for a certain target system, the target adapter can add the following
attributes to the main schema:

schema.Attributes = new List<SchemaNodeAttribute> { new
SchemaNodeAttribute { Name = "SqlString", Value = finalQueryString } };

Optional

The following methods are optional but highly recommended:

 Validation – If you need to perform a custom validation on your adapter, you can
override the PerformValidation method with Validation().

 Testing connection – If you need to perform a special action when the framework is
testing the connection of a service, you can override the TestConnection() method.

Creating a Map designer Function
Introduction

Sometimes the pre-installed functions for mapping in Map Designer is not enough and you
need to create your own. In the Visual Studio templates the functions are called functoids.

ReadSoft Service Bus SDK | page 40 of 57

1. Create a new RSB Mapping functoid project.

Implementation

After creating the project you get the following generated code:

/// <summary>

/// Sample functoid that shows how to implement a functoid that
executes code in the runtime transformation process

/// </summary>

[Export(typeof(Functoid))]

public class MyMappingFunctoid : CodeFunctoid

{

 private static readonly Guid Id = new Guid("6d341a06-e870-45b4-b164-
c69ea7bf2395");

 [CodeFunctoidMethod]

 public string DoStuff(string myParam, string myOtherParam)

 public override Guid FunctoidId

 public override FunctoidInfo GetInfo()

ReadSoft Service Bus SDK | page 41 of 57

}

The Id is just a key and does not need to be changed.

If you want more, or fewer, parameters in your function, change the GetInfo method.

In the method DoStuff, you implement the actual function and all your parameters that you
described in GetInfo will be parameters to DoStuff. RSB knows to call DoStuff because of the
[CodeFunctoidMethod] attribute.

In SDK installation there are two function samples. One sample of a code-based function of
the type described above. There is also a sample for XPath function. In XPath functions, you
must overwrite the method, EmitXPath.

Install your function

After you implement your function and test it with unit tests, make sure the assembly name
has “functoid” somewhere in the name. Copy the assembly to the ReadSoft\RSB windows
service\WebHost\bin folder. On Windows 7 the default is C:\Program Files
(x86)\ReadSoft\RSB windows service\WebHost\bin.

After you copy the assembly, you must restart the Map Designer host.

 If you are using IIS as a host, restart IIS.

 If you are using stand-alone hosting, right-click the RSB icon in the system tray, select
Close RSB and start RSB again.

Creating a target document service
Introduction

In this section we will dig a little deeper in the target-document service which we already
created in Adding an adapter service. In that section, you created a target service that transfers
invoices to your system. When you added the target service via the template, Document
Target Service, a file containing following classes was generated:

public class SubmitInvoiceServiceProperties : TargetServiceProperties
public class SubmitInvoiceService :
GenericDocumentTargetService<SubmitInvoiceServiceProperties,
AdapterProperties>

Classes

 SubmitInvoiceServiceProperties – implements settings for the adapter service.

ReadSoft Service Bus SDK | page 42 of 57

 SubmitInvoiceService – implements the actual services that submit the invoice to the
target system.

SubmitInvoiceService implements a stub of a very simple target adapter that processes
invoices. It inherits the abstract base class, GenericDocumentTargetService, which provides
basic functionality and gives directives about what to implement.

public class SubmitInvoiceService :
GenericDocumentTargetService<SubmitInvoiceServiceProperties,
AdapterProperties>

Mandatory

The adapter service class inherits all mandatory interfaces required for a target adapter service
via the base class, GenericDocumentTargetService.

One method must be implemented: SubmitGenericDocument.

SubmitGenericDocument

This method is called by the document service. Since we are not implementing a mappable
target adapter the xml in the GenrericDocument is the xml that is sent by the source adapter.
Process the xml and then connect to the target system and send document.

 serviceProperties – holds the properties for the adapter service.

 systemProperties - holds the properties for the adapter system.

 Document – holds the document.

 serviceConfigurationID – the service configuration for the document service.

Optional

The following methods are optional, but highly recommended:

 Validation – If you need to perform a custom validation on your adapter, you can
override the PerformValidation method with Validation().

 Testing connection – If you need to perform a special action when the framework is
testing the connection of a service, you can override the TestConnection() method.

Asynchronous target services

Asynchronous target services can only be used when the source document service uses
asynchronous transfer. What makes a target service asynchronous is that it can return
IN_PROGRESS from SubmitGenericDocument and then implements the GetDocumentState

ReadSoft Service Bus SDK | page 43 of 57

function, which allows a source system repeatedly to query the target service for document
state via RSB.

An asynchronous target service normally returns IN_PROGRESS from the
SubmitGenericDocument function, but it can also return COMPLETE, ERROR or
REJECTED.

Asynchronous transfer goes through the following steps

1. Transfer is initiated through a call to SubmitGenericDocument. This function call
typically returns IN_PROGRESS.

2. Transfer is ongoing, but SubmitGenericDocument has exited. An external system is
working on the document and will eventually return a result, for example by writing a file
to a network share.

3. The source system and RSB can ask the target service any number of times about the state
of the document by calling GetDocumentState. These calls return IN_PROGRESS until
the external system has returned a result.

4. The external system returns a result.

5. Subsequent calls to GetDocumentState return the result from the external system.

GetDocumentState

The GetDocumentState function only needs to be implemented by Asynchronous target
services. It is capable of retrieving a document state using the GUID of the document and
returning this state with any comment inside a Result object.

Creating a source document service
The source-document service is the front end to external systems that access the service bus.
The adapter that provides this service exposes an interface to the system that wants to transfer
a document to one or more targets. In this section, we show how to create a source-adapter
service.

1. Create an adapter project as described in Creating an adapter project.

2. In your adapter project, right-click the project and select Add > New item.

ReadSoft Service Bus SDK | page 44 of 57

3. Select the RSB in the Categories list to display the templates you can choose. For this first
exercise, we will use the Document source service template.

4. Give the adapter service an appropriate name. The name is used to create the default
names for the auto-generated classes.

5. Click Add to create a new file containing default classes.

Classes

The following classes are generated by the template:

namespace ReadSoft.ServiceBus.My_RSB_Source
{
 public class TransferInvoiceServiceProperties : IServiceProperties
 public class TransferInvoiceService :
 GenericDocumentSourceService<TransferInvoiceServiceProperties,
AdapterProperties>
}

 TransferInvoiceServiceProperties – contains the properties for my adapter service.

ReadSoft Service Bus SDK | page 45 of 57

 TransferInvoice –implements the adapter service for transfer of invoices. It inherits the
source-adapter service base class, GenericDocumentSourceService, which provides the
basic behavior for the service.

GenericDocumentSourceService

The adapter-service class inherits all mandatory interfaces via the base class,
GenericDocumentSourceService. IGenericDocumentSource has the following methods that
must be implemented:

override public GenericDocumentState GetDocumentState(Guid docId)
override public Result ProcessDocument(GenericDocument document)
public override Result ProcessDocumentSynchronous(GenericDocument
document)
public override Result ReleaseDocument(Guid docId)

 GetDocumentState – Returns the state of the document with the ID passed as
parameter.

 ProcessDocument – Starts an asynchronous transfer process of the document to the
target. Control returns after the call to the bus which starts the actual transfer.

Note: You can choose whether you want to work with asynchronous processes
(ProcessDocument) or synchronous processes (ProcessDocumentSynchronous).

 ProcessDocumentSynchronous – The synchronous alternative of the ProcessDocument.
After the adapter calls the bus and gets control back, the transfer of the document is
finished with a positive or negative result.

Note: You can choose whether you want to work with asynchronous processes
(ProcessDocument) or synchronous processes (ProcessDocumentSynchronous).

 ReleaseDocument – Used in the asynchronous call to let the bus know that it everything
is OK and it is OK to release the document.

Expose your own interface

To see how to expose your own service interface, see the data services example in SDK
Examples.

Properties

See target adapter service.

ReadSoft Service Bus SDK | page 46 of 57

Creating a provider data service
A provider adapter supports services that access different data entities (supplier, buyer,
purchase order etc.) within the target system. Each data entity is handled in its own adapter
service. The SDK provides some tools that make it easy to start developing these services. In
this section, we show how to create a provider data service.

1. Create an adapter project as described in Creating an adapter project.

2. In your adapter project, right-click the project and select Add > New item.

3. Select the RSB in the Categories list to display the templates you can choose. For this first
exercise, we will use the Data entity provider service template.

4. Give the adapter service an appropriate name. The name is used to create the default
names for the auto-generated classes.

5. Click Add to create a new file containing default classes.

Classes

The following classes are generated by the template:

ReadSoft Service Bus SDK | page 47 of 57

namespace ReadSoft.ServiceBus.MyTest

{

 public class MySupplier

 public class MySupplierQuery

 public class MySupplierServiceProperties :
MasterDataOnlineProperties, IServiceProperties

 public class MySupplierList : List<MySupplier>

 public class MySupplierService :
DataEntityProviderService<MySupplierServiceProperties,

 AdapterProperties, MySupplier, MySupplierQuery>

}

 MySupplier – implements the data entity.

 MySupplierQuery – implements the query for MySupplier.

 MySupplierServiceProperties - the properties for the adapter service
(MySupplierService).

 MySupplierList – help class for a list of MySupplier. This class converts XML into data
which you can work with more easily.

 MySupplierService – implements the adapter service for the MySupplier data entity. It
inherits the provider service base class which provides the basic behavior.

You implement the actual service for this data entity in MySupplierService. The following
method is called by the service bus and that implements the interface to the provider system:

public override List<MySupplier> Query(MySupplierQuery queryDataEntity,

MySupplierServiceProperties serviceProperties, AdapterProperties
adapterProperties)

{

 return GetMySuppliers(queryDataEntity, serviceProperties,
adapterProperties);

ReadSoft Service Bus SDK | page 48 of 57

}

The method above is called by the implementation of an interface in the base class:

[ServiceContract]

public interface IDataEntityProvider

{

 [OperationContract]

 EntityList Query(string serializedQuery, Activity activity);

 [OperationContract]

 string SupportedDataEntityType();

 [OperationContract]

 string SerializeEntity();

}

 Query – returns a list of entities as strings that was found based on the query passed as the
parameter. The Activity is the configuration to be used when accessing the target.

 SupportedDataType – returns the name of supported data type.

 SerializeEntity – used for validating the service configuration. The method is
implemented in DataEntityProviderService and returns the serialized data entity.

The DataEntityProviderService is the base class that implements a general behavior for
this interface and that you normally use when developing your own adapter.

public abstract class DataEntityProviderService<TActivityProperties,
TSystemProperties, TDataEntity, TQueryDataEntity> :

AdapterService<TActivityProperties, TSystemProperties>,
IDataEntityProvider

where TActivityProperties : MasterDataOnlineProperties,
IServiceProperties, new()

ReadSoft Service Bus SDK | page 49 of 57

where TSystemProperties : IAdapterProperties, new()

where TQueryDataEntity : new()

 EntityList Query(…) – implements the base functionality in the of the query for the
specific data entity that the service supports. It calls the abstract method in the class,
which perform the actual query. Since it is an abstract method, you need to override it in
the adapter service you implement.

 List<TDataEntity> Query(…)

public abstract List<TDataEntity> Query(TQueryDataEntity queryDataEntity,
TActivityProperties properties, TSystemProperties systemProperties);

Since it also inherits from the AdapterService class, you get standard behavior for an
adapter service, such as validation and maintenance.

Creating a consumer data service
A consumer adapter provides a front end to an external target system to access different data
entities (supplier, buyer, purchase order etc.). Each entity is handled in its own adapter
service. To avoid duplicate code when creating a data-entity consumer and data-entity
provider for the same data-entity type, we recommend moving the entity to a separate
assembly that is shared between consumer and provider. The SDK provides some tools that
make it easy to start developing these services. In this section, we show how to create a
consumer data service.

1. Create an adapter project as described in Creating an adapter project.

ReadSoft Service Bus SDK | page 50 of 57

In your adapter project, right-click the project and select Add->New item.

2. Select the RSB in the Categories list to display the templates you can choose. For this
first exercise, we will use the Data entity consumer service template.

3. Give the adapter service an appropriate name. The name is used to create the default
names for the auto-generated classes.

4. Click Add to create a new file containing default classes.

In this example we will use PurchaseOrder as an example of a data entity.

ReadSoft Service Bus SDK | page 51 of 57

Classes

 PurchaseOrder – implements the data entity.

 PurchaseOrderQuery – implements the query for my data entity.

 PurchaseOrderServiceProperties - The properties for the adapter service
(PurchaseOrderService).

 PurchaseOrderList – help class for a list of PurchaseOrders. This class converts XML
into data which you can work with more easily.

 PurchaseOrderService –implements the adapter service for the PurchaseOrder data
entity. It inherits the provider service base class which provides the basic behavior.

You do not actually implement anything in PurchaseOrderService to enable the external
system to query the data entity. You can query the target for a specific entity via
IDataEntityConsumer, which is implemented by the base class.

[ServiceContract]
public interface IDataEntityConsumer
{

ReadSoft Service Bus SDK | page 52 of 57

 [OperationContract]
 EntityList Query(string type, string serializedQuery, Guid
ServiceConfigurationID, int
 ExternalID);
 [OperationContract]
 void DeserializeEntity(string type, string serializedQueryEntity);
}

In many cases, however, you might want to expose a more domain-specific service using
typed entities. If this is the case, you can implement your own interface and let RSB host this
for you. See Expose your own interface for more information.

Expose your own interface

This section will show how you can implement your own service that expose a more domain
specific interface. The template to create a consumer service is prepared for this so it should
be rather easy to set it up.

First, you need to uncomment the interfaces. It could also be a good practice to have this in a
separate file:

[ServiceContract]
public interface IPurchaseOrder
{
 [OperationContract]
 List<PurchaseOrder> Query(PurchaseOrderQuery query, Guid
serviceConfigurationID, int
 externalID);
}

public List<PurchaseOrder> Query(PurchaseOrderQuery query, Guid
serviceConfigurationID, int
 externalID)
{

 return QueryAny< PurchaseOrder, PurchaseOrderQuery>(query,
serviceConfigurationID,
 externalID);
}

ReadSoft Service Bus SDK | page 53 of 57

Working with service extensions
Service extensions are used for filtering before target activities are called by RSB. There is no
template yet for creating a service extension adapter, but in your RSB SDK directory there is
a sample project. If you build it and run the installation, Simple Filter will be visible in the
user interface for all target activities.

Troubleshooting
Problem "NETWORK SERVICE cannot access\ASP.NET
Temporary files"

This can happen if you install IIS after you have installed .NET framework.

Solution: Run "aspnet_regiis -i" in a command prompt. The tool is located in the .net
framework directory

RSB Admin is not shown

Make sure the ".xap application/x-silverlight-app" MIME type is added to the RSB site in IIS

IIS -> Default web site -> RSB -> Properties -> HTTP Headers -> MIME Map -> File types

RSB log file shows "(405) Method not allowed"

RSB log file shows "(405) Method not allowed" and/or the web interface shows raw file
content (such as "<%@ServiceHost language=c# Debug="true"
Service="Microsoft.ServiceModel.Samples.CalculatorService" %>") when browsing the
service. The solution can be found here:

http://msdn.microsoft.com/en-us/library/ms752252.aspx

Need more help?

If you have a problem that is not covered here, you can post issues on the RSB forum or the
SDK forum.

http://msdn.microsoft.com/en-us/library/ms752252.aspx�
http://sharepoint/corporate/rd/rsb/Pages/Forums.aspx�
http://rsdn/rcc/RSB_SDK/Lists/Forum/AllItems.aspx�

ReadSoft Service Bus SDK | page 54 of 57

If you have a question or comment about the SDK Help, you can post comments directly in
Help.

	ReadSoft Service Bus 2-4
	Contents
	About the SDK
	System requirements
	Concepts
	System overview
	Design goals
	Extending the bus capabilities

	Connecting to the service bus
	Configuration
	Transfer document

	RSB services
	Document services
	Data services
	Adapters
	Source adapters
	Target adapters

	Getting started
	Developing adapters
	Adapter communication
	Hosting adapters

	Setting up the environment
	Setting up the database
	Setting up IIS
	Visual Studio project template

	Creating an adapter project
	Installing an adapter
	Manually registering an adapter
	Example1
	Example2

	Adapter registration tool
	Command
	Arguments
	Initial directory

	Debugging an adapter
	Simulators
	SDK examples
	Document-services example
	Data services example

	Working with services
	Adding an adapter service
	Adding service properties
	PublicProperty
	Syntax
	Examples

	PublicProperty examples
	Validating adapter properties
	Adding special configuration behavior
	Example

	Using the logging service
	Example 1
	Example 2

	Working with adapter properties
	Adapter properties
	Adapter service properties

	Creating a mappable target document service
	Introduction
	How to create the Adapter
	Classes
	Mandatory
	SubmitGenericDocument
	CreateMappingSchema
	RSB schema node attributes
	Optional

	Creating a Map designer Function
	Introduction
	Implementation
	Install your function

	Creating a target document service
	Introduction
	Classes
	Mandatory
	SubmitGenericDocument
	Optional

	Asynchronous target services
	GetDocumentState

	Creating a source document service
	Classes
	GenericDocumentSourceService

	Expose your own interface
	Properties

	Creating a provider data service
	Classes

	Creating a consumer data service
	Classes
	Expose your own interface

	Working with service extensions
	Troubleshooting
	Problem "NETWORK SERVICE cannot access\ASP.NET Temporary files"
	RSB Admin is not shown
	RSB log file shows "(405) Method not allowed"
	Need more help?

