
Kofax Kapow
Developer's Guide
Version: 10.3.1

Date: 2018-09-27

© 2018 Kofax. All rights reserved.

Kofax is a trademark of Kofax, Inc., registered in the U.S. and/or other countries. All other trademarks
are the property of their respective owners. No part of this publication may be reproduced, stored, or
transmitted in any form without the prior written permission of Kofax.

Table of Contents
Preface.. 5

Getting Help for Kofax Products.. 5
Chapter 1: Java Programmer's Guide.. 7

Java Basics...7
First Example...7
Robot Input.. 9
Attribute Types...10
Execution Parameters..12
Robot Libraries...14

Java Advanced... 16
Load Distribution and Failover.. 16
Executor Logger...17
Data Streaming..18
SSL...21
Parallel Execution.. 22
Repository Integration..23

Under the Hood..24
RequestExecutor Features.. 25
Web Applications... 25

API Debugging..26
Repository API..27

Dependencies.. 27
Repository Client..27
Deployment via Repository Client... 30
Repository Rest API.. 31

Chapter 2: .NET Programmer's Guide.. 38
.Net Basics..38

First Example...38
Robot Input.. 40
Attribute Types...41
Execution Parameters..43
Robot Libraries...44

.NET Advanced...46
Load Distribution..46

3

Kofax Kapow Developer's Guide

Data Streaming..47
SSL...51
Repository Integration..52
Executor Logger...52

Under the Hood..53
Request Executor Features...54

Repository API..54
Repository Client..54
Deployment via Repository Client... 57
Repository API as Rest... 57

Examples.. 58
Configure the RoboServer...58
Configure the API Client..58

Chapter 3: Kapow Control Protocol..60
Build a JMS Client..61

KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message.....................61
KCP Tutorial 2: Consume Specific Results...65
KCP Tutorial 3: Stop Robot Execution..66

4

Preface

Robots are executed on RoboServer through an API (Java or .Net). You may use the API directly in your
own application or indirectly when you execute robots using the Management Console.

This guide consists of three parts:

• Java Programmer's Guide, which describes the API that can be used in Java programs.
• .NET Programmer's Guide, which describes the API to use in .NET applications, including C#

programs.
• Kapow Control Protocol, which describes the creation of a JMS client for executing robots over Java

Message Service (JMS), using Google Protocol Buffers (Protobuf).

Java and .NET API reference documentation is available from the API folder in your Kapow installation
folder, such as C:\Program Files\Kofax Kapow 10.3.1\API.

Getting Help for Kofax Products
Kofax regularly updates the Kofax Support site with the latest information about Kofax products.

To access some resources, you must have a valid Support Agreement with an authorized Kofax Reseller/
Partner or with Kofax directly.

Use the tools that Kofax provides for researching and identifying issues. For example, use the Kofax
Support site to search for answers about messages, keywords, and product issues. To access the Kofax
Support page, go to www.kofax.com/support.

The Kofax Support page provides:
• Product information and release news

Click a product family, select a product, and select a version number.
• Downloadable product documentation

Click a product family, select a product, and click Documentation.
• Access to product knowledge bases

Click Knowledge Base.
• Access to the Kofax Customer Portal (for eligible customers)

Click Account Management and log in.
To optimize your use of the portal, go to the Kofax Customer Portal login page and click the link to
open the Guide to the Kofax Support Portal. This guide describes how to access the support site, what
to do before contacting the support team, how to open a new case or view an open case, and what
information to collect before opening a case.

• Access to support tools

5

http://www.kofax.com/support

Kofax Kapow Developer's Guide

Click Tools and select the tool to use.
• Information about the support commitment for Kofax products

Click Support Details and select Kofax Support Commitment.

Use these tools to find answers to questions that you have, to learn about new functionality, and to
research possible solutions to current issues.

6

Chapter 1

Java Programmer's Guide

This chapter describes how to execute Robots using the Kofax Kapow Java API. The guide assumes that
you have completed the Design Studio tutorials and know how to write simple robots, and that you are
familiar with the Java programming language.

Important The printStackTrace method is deprecated in Kofax Kapow version 9.6 and later.

Details about specific classes are found in the JavaDoc.

Java Basics
Robots run by the Management Console are executed using the Java API, which allows you to send
requests to a RoboServer that instructs it to execute a particular robot. This is a classic client/server
setup in which Management Console acts as the client and RoboServer as the server.

By using the API, any Java based application can become a client to RoboServer. In addition to running
robots that store data in a database, you can also have the robots return data directly back to the client
application. Here are some examples:

• Use multiple robots to do a federated search, which aggregates results from multiple sources in real
time.

• Run a robot in response to an event on your application back end. For instance, run a robot when a
new user signs up, to create accounts on web-based systems not integrated directly into your back end.

This guide introduces the core classes, and how to use them for executing robots. We will also describe
how to provide input to robots, and control their execution on RoboServer.

The Java API is a jar file located in /API/robosuite-java-api/lib/robosuite-api.jar inside
the Kofax Kapow installation folder. See "Important Folders" in the Installation Guide for details. All
examples in this guide are also found in /API/robosuite-java-api/examples. Located next to the
Java API are five additional jar files which comprise the external dependencies of the API. Most basic API
tasks such as executing robots can be done without using any of these third-party libraries, while some
advanced features do require the usage of one or more of these libraries. The examples in this guide
specify when such libraries are required.

First Example
Let's start by looking at the code required to execute the robot named NewsMagazine.robot, which is
located in the Tutorials folder of the default project. The robot outputs its results using the Return Value
step action, which makes it easy to handle the output programmatically using the API. Other robots

7

Kofax Kapow Developer's Guide

(typically those run in a schedule by the Management Console) store their data directly in a database
using the Store in Database step action, in which case data collected by the robot is not returned to the
API client.

In the following example, we will look at how to execute the NewsMagazine robot and process the output
programmatically.

Execute a Robot without input:

 import com.kapowtech.robosuite.api.java.repository.construct.*;
 import com.kapowtech.robosuite.api.java.rql.*;
 import com.kapowtech.robosuite.api.java.rql.construct.*;

 /**
 * Example that shows you how to execute NewsMagazine.robot from tutorial1
 */
 public class Tutorial1 {

 public static void main(String[] args) throws ClusterAlreadyDefinedException {

 RoboServer server = new RoboServer("localhost", 50000);
 boolean ssl = false;
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);

 Request.registerCluster(cluster); // you can only register a cluster once per
 application

 try {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = request.execute("MyCluster");

 for (Object o : result.getOutputObjectsByName("Post")) {
 RQLObject value = (RQLObject) o;
 String title = (String) value.get("title");
 String preview = (String) value.get("preview");
 System.out.println(title + ", " + preview);
 }
 }
 }
 }

Let's start by looking at the classes involved and their responsibilities.

RoboServer This is a simple value object that identifies a RoboServer that can execute
robots. Each RoboServer must be activated by a Management Console and
assigned KCU before use.

Cluster A cluster is a group of RoboServers functioning as a single logical unit.

Request This class is used to construct the robot request. Before you can execute any
requests, you must register a cluster with the Request class.

DefaultRobotLibrary A robot library instructs RoboServer on where to find the robot identified in the
request. Later examples will explore the various robot library types and when/how
to use them.

RQLResult This class contains the result of a robot execution. The result contains value
responses, with log and server messages.

8

Kofax Kapow Developer's Guide

RQLObject Each value that is returned from a robot using the Return Value action can be
accessed as an RQLObject.

Now let's go through each line in the example and look at the specifics.

This line tells the API that our RoboServer is running on localhost port 50000.
RoboServer server = new RoboServer("localhost", 50000);

The following code defines a cluster with a single RoboServer. The cluster is registered with the Request
class, allowing you to execute requests on this cluster. Each cluster can only be registered once.

Registering a cluster:
boolean ssl = false;
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);
 Request.registerCluster(cluster);

The following code creates a request that will execute the robot named NewsMagazine.robot located
at Library:/Tutorials.Library:/ refers to the robot Library configured for the request. Here the
DefaultRobotLibrary is used, which instructs RoboServer to look for the robot in the server's local
file system. See Robot Libraries for details on how to use robot libraries.
Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());

The next line executes the robot on the cluster named MyCluster (the cluster previously registered)
and returns the result once the robot is done. By default execute will throw an exception if the robot
generates an API exception.
RQLResult result = request.execute("MyCluster")

Here we process the extracted values. First we get all extracted values of the type named Post and iterate
through them. For each RQLObject we access the attributes of the Post type and print the result. We will
look at attributes and mappings in a later section.

 for (Object o : result.getOutputObjectsByName("Post")) {
 RQLObject value = (RQLObject) o;
 String title = (String) value.get("title");
 String preview = (String) value.get("preview");
 System.out.println(title + ": " + preview);
 }

Robot Input
Most robots executed through the API are parameterized through input, such as a search keyword,
or login credentials. Input to a robot is part of the request to RoboServer and is provided using the
createInputVariable method on the request. Let us look at a short code fragment.

Input using implicit RQLObjectBuilder:

 Request request = new Request("Library:/Input.robot");
 request.createInputVariable("userLogin").setAttribute("username", "scott")
 .setAttribute("password", "tiger");

9

Kofax Kapow Developer's Guide

Here we create a Request and use createInputVariable to create an input variable named
userLogin. We then use setAttribute to configure the username and password attributes of the
input variable.

The preceding example is a common shorthand notation, but can also be expressed in more detail by
using the RQLObjectBuilder:

Input using explicit RQLObjectBuilder:

 Request request = new Request("Library:/Input.robot");
 RQLObjectBuilder userLogin = request.createInputVariable("userLogin");
 userLogin.setAttribute("username", "scott");
 userLogin.setAttribute("password", "tiger");

The two examples are identical. The first utilizes the cascading method invocation on the anonymous
RQLObjectBuilder and therefore shorter.

When RoboServer receives this request, the following occurs:

• RoboServer loads Input.robot (from whatever RobotLibrary is configured for the request).
• RoboServers verifies that the robot has a variable named userLogin and that this variable is marked

as input.
• RoboServers now verifies that the attributes configured using setAttribute are compatible with the

type of variable userLogin. As a result, the type must have attributes named username and password
and must both be text-based attributes (the next section describes the mapping between the API and
Design Studio attributes).

• If all input variables are compatible, RoboServer will start executing the robot.

If a robot requires multiple input variables, you must create all of them to execute the robot. You only have
to configure required attributes; any no-required attributes that you do not configure through the API will
have a null value. If you have a robot that requires a login to both Facebook and Twitter, you could define
the input like this.
Request request = new Request("Library:/Input.robot");
 request.createInputVariable("facebook").setAttribute("username", "scott")
 .setAttribute("password", "facebook123");
 request.createInputVariable("twitter").setAttribute("username", "scott")
 .setAttribute("password", "twitter123");

Attribute Types
When you define a new type in Design Studio, select a type for each attribute. Some attributes can
contain text, like Short text, Long Text, Password, HTML, XML, and when used inside a robot, there may
be requirements to store text in these attributes. If you store text in an XML attribute, the text must be a
valid XML document. This validation occurs when the type is used inside a robot, but since the API does
not know anything about the type, it does not validate attribute values in the same manner. As a result,
the API only has 8 attribute types versus the 19 available in Design Studio. This table shows the mapping
between the API and Design Studio attribute types.

10

Kofax Kapow Developer's Guide

API to Design Studio mapping

API Attribute Type Design Studio Attribute Type

Text Short Text, Long Text, Password, HTML, XML, Properties, Language, Country,
Currency, Refind Key

Integer Integer

Boolean Boolean

Number Number

Character Character

Date Date

Session Session

Binary Binary, Image, PDF

The API attribute types are then mapped to Java in the following way.

Java Types for Attributes

API Attribute Type Java Class

Text java.lang.String

Integer java.lang.Long

Boolean java.lang.Boolean

Number java.lang.Double

Character java.lang.Character

Date java.util.Date

Session com.kapowtech.robosuite.api.construct.Session

Binary com.kapowtech.robosuite.api.construct.Binary

The RQlObjectBuilder's setAttribute method is overloaded so you do not need to specify the attribute
type explicitly when configuring an attribute through the API, as long as the right Java class is used as an
argument. Here is an example that shows how to set the attributes for an object with all possible (Design
Studio) attribute types.

Recommended usage of setAttribute:

 Request request = new Request("Library:/AllTypes.robot");
 RQLObjectBuilder inputBuilder = request.createInputVariable("AllTypes");
 inputBuilder.setAttribute("anInt", new Long(42L));
 inputBuilder.setAttribute("aNumber", new Double(12.34));
 inputBuilder.setAttribute("aBoolean", Boolean.TRUE);
 inputBuilder.setAttribute("aCharacter", 'c');
 inputBuilder.setAttribute("aShortText", "some text");
 inputBuilder.setAttribute("aLongText", "a longer test");
 inputBuilder.setAttribute("aPassword", "secret");
 inputBuilder.setAttribute("aHTML", "<html>bla</html>");
 inputBuilder.setAttribute("anXML", "<tag>text</tag>");
 inputBuilder.setAttribute("aDate", new Date());

11

Kofax Kapow Developer's Guide

 inputBuilder.setAttribute("aBinary", new Binary("some bytes".getBytes()));
 inputBuilder.setAttribute("aPDF", (Binary) null);
 inputBuilder.setAttribute("anImage", (Binary) null);
 inputBuilder.setAttribute("aProperties", "name=value\nname2=value2");
 inputBuilder.setAttribute("aSession", (Session) null);
 inputBuilder.setAttribute("aCurrency", "USD");
 inputBuilder.setAttribute("aCountry", "US");
 inputBuilder.setAttribute("aLanguage", "en");
 inputBuilder.setAttribute("aRefindKey", "Never use this a input");

The preceding example explicitly uses new Long(42L), and new Double(12.34), although 42L and 12.34
would be sufficient due to auto boxing. Also notice that we have to cast null values, because the Java
compiler cannot otherwise determine which of the overloaded setAttribute methods to call. However,
since unconfigured attributes will automatically be null, you never need to set null explicitly.

It is possible to specify the Attribute and AttributeType explicitly when creating input using the API.
This approach is not recommended, but may be needed in rare cases, and would look like this.

Incorrect usage of setAttribute:
Request request = new Request("Library:/AllTypes.robot");
 RQLObjectBuilder inputBuilder = request.createInputVariable("AllTypes");
 inputBuilder.setAttribute(new Attribute("anInt", "42", AttributeType.INTEGER));
 inputBuilder.setAttribute(new Attribute("aNumber", "12.34", AttributeType.NUMBER));
 inputBuilder.setAttribute(new Attribute("aBoolean", "true", AttributeType.BOOLEAN));
 inputBuilder.setAttribute(new Attribute("aCharacter", "c", AttributeType.CHARACTER));
 inputBuilder.setAttribute(new Attribute("aShortText", "some text",
 AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aLongText", "a longer test",
 AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aPassword", "secret", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aHTML", "<html>bla</html>",
 AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("anXML", "<tag>text</tag>",
 AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aDate", "2012-01-15 23:59:59.123",
 AttributeType.DATE));
 inputBuilder.setAttribute(new Attribute("aBinary",
 Base64Encoder.encode("some bytes".getBytes()), AttributeType.BINARY));
 inputBuilder.setAttribute(new Attribute("aPDF", null, AttributeType.BINARY));
 inputBuilder.setAttribute(new Attribute("anImage", null, AttributeType.BINARY));
 inputBuilder.setAttribute(new Attribute("aProperties", "name=value\nname2=value2",
 AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aSession", null, AttributeType.SESSION));
 inputBuilder.setAttribute(new Attribute("aCurrency", "USD", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aCountry", "US", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aLanguage", "en", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aRefindKey", "Never use this a input",
 AttributeType.TEXT));

All attribute values must be provided in the form of strings. The string values are then converted to the
appropriate Java objects based on the attribute type provided. This is only useful if you build other generic
APIs on top of the Kofax Kapow Java API.

Execution Parameters
In addition to the createInputVariable method, the Request contains a number of methods that
control how the robot executes on RoboServer.

12

Kofax Kapow Developer's Guide

Execution Control Methods on Request

setMaxExecutionTime(int seconds) Controls the execution time of the robot. When this time
has elapsed, the robot will be stopped by RoboServer.
The timer does not start until the robot begins to execute,
so if the robot is queued on RoboServer, this is not taken
into account.

setStopOnConnectionLost(boolean) When true (default) the robot will stop if RoboServer
discovers that the connection to the client application
has been lost. You should have a very good reason for
setting this value to false; if your code is not written to
handle this value, your application will not perform as
expected.

setStopRobotOnApiException(boolean) When true (default) the robot is stopped by RoboServer
after the first API exception is raised. By default most
steps in a Robot raise an API exception if the step fails
to execute. Configure this value on the Steps Error
Handling tab.
When set to false, the robot continues to execute
regardless of API exceptions. However, unless your
application is using the RequestExecutor streaming
execution mode, an exception is still thrown by execute().
Be extremely cautious when setting this to false.

setUsername(String), setPassword(String) Sets the RoboServer credentials. RoboServer can
be configured to require authentication. When this
option is enabled, the client must provide credentials or
RoboServer will reject the request.

setRobotLibrary(RobotLibrary) A robot library instructs RoboServer on where to find
the robot identified in the request. For more examples
related to the various library types and their usage, see
Robot Libraries.

setExecutionId(String) Allows you to set the executionId for this request.
If you don't provide one, RoboServer generates one
automatically. The execution ID is used for logging and is
also needed to stop the robot programmatically. The ID
must be globally unique (over time). If two robots use the
same execution ID, the logs will be inconsistent.

setProject(String) This method is used solely for logging purposes.
The Management Console uses this field to link log
messages to project, so the log views can filter by
project.
If your application is not using the
RepositoryRobotLibrary, you should probably
set this value to inform the RoboServer logging system
which project (if any) this robot belongs to.

13

Kofax Kapow Developer's Guide

Robot Libraries
In Design Studio, robots are grouped into projects. If you look in the file system, you will see that these
projects are identified by a folder named Library (see the "Libraries and Robot Projects" topic in Kapow
help for details).

When you build the execute request for RoboServer, you identify the robot by a robot URL:

Request request = new Request("Library:/Input.robot");

Here, Library:/ is a symbolic reference to a robot library, in which the RoboServer should look for the
robot. The RobotLibrary is specified on the builder:

request.setRobotLibrary(new DefaultRobotLibrary());

Three different robot library implementations are available, and your selection depends on the deployment
environment.

Robot Libraries

Library Type Description

DefaultRobotLibrary This library configures RoboServer to look for the robot in
the current project folder, which is defined in the Settings
application.
If you have multiple RoboServers, you must deploy your
robots on all RoboServers.
This robot library is not cached, so the robot is reloaded from
disk with every execution. This approach makes the library
usable in a development environment where robots change
often, but it is not suitable for a production environment.

14

Kofax Kapow Developer's Guide

Library Type Description

EmbeddedFileBasedRobotLibrary This library is embedded in the execute request sent to
RoboServer. To create this library you must create a zip file
containing the robots and all dependencies (types, snippets
and resources). Use the Tools > Create Robot Library File
menu in Design Studio.
The library is sent with every request, which adds some
overhead for large libraries, but the libraries are cached on
RoboServer, which offers best possible performance.
One strength is that robots and code can be deployed
as a single unit, which offers clean migration from a QA
environment to production environment. However, if the robots
change often, you will have to redeploy them often.
You can use the following code to configure the embedded
robot library for your request.

Request request = new
Request("Library:/Tutorials/
 NewsMagazine.robot");
RobotLibrary library =
 new EmbeddedFileBasedRobotLibrary
 (new FileInputStream
 ("c:\\embeddedLibrary.robotlib"));
request.setRobotLibrary(library);

15

Kofax Kapow Developer's Guide

Library Type Description

RepositoryRobotLibrary This is the most flexible robot library.
This library uses the Management Console's built-in repository
as a robot library. When you use this library, RoboServer will
contact the Management Console, which will send a robot
library containing the robot and its dependencies.
Caching occurs on a per robot basis, inside both Management
Console and RoboServer. Inside Management Console,
the generated library is cached based on the robot and its
dependencies. On RoboServer, the cache is based on a
timeout, so it doesn't have to ask the Management Console
for each request. In addition, the library loading between
RoboServer and Management Console uses HTTP public/
private caching, to further reduce bandwidth.
If NewsMagazine.robot is uploaded to the Management
Console, you can use the repository robot library when
executing the robot:

Request request = new
Request("Library:/Tutorials/
NewsMagazine.robot");
RobotLibrary library = new
RepositoryRobotLibrary("http://
localhost:50080", "Default Project",
60000);
request.setRobotLibrary(library);

This will instruct RoboServer to load the robot from a local
Management Console and cache it for one minute before
checking with the Management Console to see if a new
version of the robot (its type and snippets) has been changed.
In addition, any resource loaded through the Library:/
protocol causes the RoboServer to request the resource
directly from the Management Console.

Java Advanced
This section describes advanced API features, including output streaming, logging and SSL configuration,
as well as parallel execution.

Load Distribution and Failover
Inside the RequestExecutor, the executor is given an array of RoboServers. As the executor is
constructed, it tries to connect to each RoboServer. Once connected, it sends a ping request to each
RoboServer to discover how the server is configured.

Load balanced executor:

 RoboServer prod = new RoboServer("prod.kapow.local", 50000);
 RoboServer prod2 = new RoboServer("prod2.kapow.local", 50000);
 Cluster cluster = new Cluster("Prod", new RoboServer[]{ prod, prod2}, false);

16

Kofax Kapow Developer's Guide

 Request.registerCluster(cluster);

The load is distributed to each online RoboServer in the cluster, based on the number of unused
execution slots on the RoboServer. The next request is always distributed to the RoboServer with the
most available slots. The number of available execution slots is obtained through the initial ping response,
and the executor keeps track of each robot it starts and when it completes. The number of execution slots
on a RoboServer is determined by the max concurrent robots setting on the Servers tab.

If a RoboServer goes offline it will not receive any robot execution requests before it has successfully
responded to the ping request.

Two Client Rule
You should only have one API client using a given cluster of RoboServer. If you have multiple JVMs
running robots against the same RoboServers, it will result in reduced performance.

Executor Logger
When you execute a request, the execute method will throw an exception if a robot generates an error.
Other types of errors and warnings are reported through the ExecutorLogger interface. In the previous
examples, we have not provided any ExecutionLogger when executing robots, which means we get
the default implementation that will write to System.out. Let's see how the ExecutorLogger will report if
one of the RoboServers goes offline.

The example configures a cluster with a RoboServer that is not online.

ExecutorLogger, offline server example:

 RoboServer rs = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("name", new RoboServer[]{rs}, false);
 Request.registerCluster(cluster);

If you run this example if should print the following to the console.

ExecutorLogger, offline RoboServer console output:

 RoboServer{host='localhost', port=50000} went offline.
 Connection refused

If you do not want to have your application writing directly to System.out, you can provide a different
ExecutorLogger implementation, when registering the cluster.

Use DebugExecutorLogger:
Request.registerCluster(cluster, new DebugExecutorLogger());

This example uses the DebugExecutorLogger() which will also print to System.out, but only if the
API debugging is enabled. You can provide your own implementation of the ExecutorLogger, to control
how error messages are handled. Check the ExecutorLogger JavaDoc for additional details.

17

Kofax Kapow Developer's Guide

Data Streaming
Sometimes you need to present the results from a robot execution in real-time. In these cases, you want
the API to return the extracted values immediately instead of waiting for the robot to finish its execution
and access the RQLResult.

The API offers the possibility to receive a callback every time the API receives a value that was returned
by the robot. Do this through the RobotResponseHandler interface.

Response streaming using AbstractFailFastRobotResponseHandler:

 public class DataStreaming {

 public static void main(String[] args) throws ClusterAlreadyDefinedException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, false);
 Request.registerCluster(cluster);

 try {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 RobotResponseHandler handler = new AbstractFailFastRobotResponseHandler()
 {
 public void handleReturnedValue(RobotOutputObjectResponse response,
 Stoppable stoppable) throws RQLException {
 RQLObject value = response.getOutputObject();
 Long personId = (Long) value.get("personId");
 String name = (String) value.get("name");
 Long age = (Long) value.get("age");
 System.out.println(personId + ", " + name + ", " + age);
 }
 };
 request.execute("MyCluster", handler);
 }
 }
 }

The preceding example uses the second execute method of the request, which expects a
RobotResponseHandler in addition to the name of the cluster to execute the robot on. In this example,
create a RobotResponseHandler by extending AbstractFailFastRobotResponseHandler, which
provides default error handling, to handle only the values returned by the robot.

The handleReturnedValue method is called whenever the API receives a returned value from
RoboServer. The AbstractFailFastRobotResponseHandler used in this example throws
exceptions in the same way as the non-streaming execute method. This means that an exception is
thrown in response to any API exceptions generated by the robot.

The RobotResponseHandler has several methods that can be grouped into three categories.

Robot life cycle events
Methods called when the robot's execution state changes on RoboServer, such as when it starts and
finishes execution.

18

Kofax Kapow Developer's Guide

Robot data events
Methods called when the robot returns data or errors to the API.

Additional error handling
Methods called due to an error inside RoboServer or in the API.

RobotResponseHandler - robot life cycle events

Method name Description

void requestSent(RoboServer roboServer,
ExecuteRequest request)

Called when the RequestExecutor finds the server
which will execute the request.

void requestAccepted(String executionId) Called when the found RoboServer accepts the request
and puts it into its queue.

void robotStarted(Stoppable stoppable) Called when the RoboServer begins to execute the
robot. This usually occurs immediately after the robot is
queued, unless the RoboServer is under a heavy load, or
used by multiple API clients.

void robotDone(RobotDoneEvent reason) Called when the robot is done executing on RoboServer.
The RobotDoneEvent is used to specify if the execution
terminated normally, due to an error, or if it was stopped.

RobotResponseHandler - robot data events

Method name Description

void

handleReturnedValue(RobotOutputObjectResponse
response, Stoppable stoppable)

Called when the robot is executed a Return Value action
and the value is returned via the socket to the API.

void handleRobotError(RobotErrorResponse
response, Stoppable stoppable)

Called when the robot raises an API exception.
Under normal circumstances the robot
stops executing after the first API exception.
This behavior can be overridden by using
Request.setStopRobotOnApiException(false),
in which case this method is called multiple times. This
approach is useful if you want a data streaming robot to
continue to execute regardless of any generated errors.

void handleWriteLog(RobotMessageResponse
response, Stoppable stoppable)

Called when the RoboServer begins to execute the
robot. This usually occurs immediately after the robot
has been queued, unless the RoboServer is under heavy
load, or used by multiple API clients.

RobotResponseHandler - additional error handling

Method name Description

void handleServerError(ServerErrorResponse
response, Stoppable stoppable)

Called if RoboServer generates an error, for instance if
the server is too busy to process any requests, or if an
error occurs inside RoboServer which prevents it from
starting the robot.

19

Kofax Kapow Developer's Guide

Method name Description

handleError(RQLException e, Stoppable
stoppable)

Called if an error occurs inside the API, or most
commonly, if the client loses the connection to
RoboServer.

Many of the methods include a Stoppable object, which can be used to stop in response to a specific error
or value returned.

Some methods allow you to throw an RQLException, which may have consequences. The thread that
calls the handler is the thread that calls Request.execute() and exceptions thrown will overload the
call stack. If you throw an exception in response to handleReturnedValue, handleRobotError or
handleWriteLog, it is your responsibility to invoke Stoppable.stop(), or the robot may continue to
execute even though the call to Request.execute() has completed.

Data streaming is most often used in one of the following use cases.
• Ajax based web applications, where results are presented to the user in real-time. If data is not

streamed, results cannot be shown until the robot is done running.
• Robots that return so much data that the client would not be able to hold it all in memory throughout the

robot's execution.
• Processes that need to be optimized so the extracted values are processed in parallel with the robot

execution.
• Processes that store data in databases in a custom format.
• Robots that should ignore or require custom handling of API exceptions (see the following).

Response and error collecting using AbstractFailFastRobotResponseHandler:

public class DataStreamingCollectErrorsAndValues {

 public static void main(String[] args) throws ClusterAlreadyDefinedException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, false);
 Request.registerCluster(cluster);

 try {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setStopRobotOnApiException(false); // IMPORTANT!!
 request.setRobotLibrary(new DefaultRobotLibrary());
 ErrorCollectingRobotResponseHandler handler =
 new ErrorCollectingRobotResponseHandler();
 request.execute("MyCluster", handler);

 System.out.println("Extracted values:");
 for (RobotOutputObjectResponse response : handler.getOutput()) {
 RQLObject value = response.getOutputObject();
 Long personId = (Long) value.get("personId");
 String name = (String) value.get("name");
 Long age = (Long) value.get("age");
 System.out.println(personId + ", " + name + ", " + age);
 }

 System.out.println("Errors:");
 for (RobotErrorResponse error : handler.getErrors()) {
 System.out.println(error.getErrorLocationCode() + ", " +
 error.getErrorMessage());

20

Kofax Kapow Developer's Guide

 }
 }
}

private static class ErrorCollectingRobotResponseHandler extends
 AbstractFailFastRobotResponseHandler {

 private List<RobotErrorResponse> _errors =
 new LinkedList<RobotErrorResponse>();
 private List<RobotOutputObjectResponse> _output =
 new LinkedList<RobotOutputObjectResponse>();
 public void handleReturnedValue
 (RobotOutputObjectResponse response, Stoppable stoppable)
 throws RQLException {
 _output.add(response);
}

@Override
public void handleRobotError(RobotErrorResponse response,
 Stoppable stoppable) throws RQLException {
 // do not call super as this will stop the robot
 _errors.add(response);
}

public List<RobotErrorResponse> getErrors() {
 return _errors;
}

public List<RobotOutputObjectResponse> getOutput() {
 return _output;
 }
 }
}

The preceding example shows how to use a RobotResponseHandler that collects returned values
and errors. This type of handler is useful if the robot should continue to execute even when errors are
encountered, which can be useful if the website is unstable and occasionally times out. Notice that
only robot errors (API exceptions) are collected by the handler. If the connection to RoboServer is lost
Request.execute() will still throw an RQLException (and the robot will be stopped by RoboServer).

For more details, check the RobotResponseHandler JavaDoc.

SSL
The API communicates with RoboServer through an RQLService, which is a RoboServer component
that listens for API requests on a specific network port. When you start a RoboServer, you specify if it
should use the encrypted SSL service, or the plain socket service, or both (using two different ports). All
RoboServers in a cluster must be running the same RQLService (although the port may be different).

Assuming we have started a RoboServer with the SSL RQLService on port 50043:

RoboServer -service ssl:50043

we can use the following code.

SSL configuration

 RoboServer server = new RoboServer("localhost", 50043);
 boolean ssl = true;

21

Kofax Kapow Developer's Guide

 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, ssl);
 Request.registerCluster(cluster);

All we need to do is to create the cluster as an SSL cluster and specify the SSL port used by each
RoboServer. Now all communication between RoboServer and the API will be encrypted.

For this example to work, you need not-yet-commons-ssl-0.3.17.jar in you application
classpath. You can find it next to the API jar file inside your Kapow installation.

In addition to data encryption, SSL offers the possibility to verify the identity of the remote party. This
type of verification is very important on the Internet, as rogue Web sites could otherwise pretend to be
someone they are not. Most often your API client and RoboServers are on the same local network, so
you rarely need to verify the identity of the other party, but the API supports this feature should it become
necessary.

Because identity verification is almost never used, it is not described in this guide. If you are interested,
see the SSL examples included with the Java API.

Parallel Execution
Both execute methods of the Request are blocking, which means that a thread is required for each robot
execution. The examples we have looked at until now have all executed the robot directly on the main
thread, which is typically not preferable as you can only execute a single robot at a time in a sequential
manner.

The following example executes two tutorial robots in parallel. This example uses the
java.util.concurrent library for multithreading.

Multithreading Example

 import com.kapowtech.robosuite.api.java.repository.construct.*;
 import com.kapowtech.robosuite.api.java.rql.*;
 import com.kapowtech.robosuite.api.java.rql.construct.*;
 import com.kapowtech.robosuite.api.java.rql.engine.hotstandby.*;

 import java.util.concurrent.*;

 public class ParallelExecution {

 public static void main(String[] args) throws Exception {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server},
 false);
 Request.registerCluster(cluster);

 int numRobots = 4;
 int numThreads = 2;
 ThreadPoolExecutor threadPool = new ThreadPoolExecutor(numThreads,
 numThreads, 10, TimeUnit.SECONDS, new LinkedBlockingQueue());
 for (int i = 0; i < numRobots; i++) {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 threadPool.execute(new RobotRunnable(request));
 }
 threadPool.shutdown();
 threadPool.awaitTermination(60, TimeUnit.SECONDS);
 }

22

Kofax Kapow Developer's Guide

 // ---
 // Inner classes
 // ---
 static class RobotRunnable implements Runnable {

 Request _request;

 RobotRunnable(Request request) {
 _request = request;
 }

 public void run() {

 try {
 RQLResult result = _request.execute("MyCluster");
 System.out.println(result);
 }
 }
 }
 }

The preceding example creates a ThreadPoolExecutor with two threads, and we then create four
RobotRunnables and execute them on the thread pool. Since the thread pool has two threads, two
robots start to execute immediately. The remaining two robots are parked in the LinkedBlockingQueue
and executed in order after the two first robot finish their execution and the thread pool threads become
available.

Please note that the request is mutable, and to avoid raising conditions, the request is cloned inside the
execute method. Because a request is mutable, you should never modify the same request on separate
threads.

Repository Integration
In the Management Console you also specify clusters of RoboServers, which are used to execute
scheduled robots, as well as robots executed as REST services. The API allows you to use
the RepositoryClient to obtain cluster information from Management Console. See the
RepositoryClient documentation for details.

Repository Integration:

 public class RepositoryIntegration {
 public static void main(String[] args) throws Exception {

 RepositoryClient client = RepositoryClientFactory.createRepositoryClient
 ("http://localhost:50080", null, null);
 Request.registerCluster(client, "Cluster 1");

 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = request.execute("MyCluster");
 System.out.println(result);
 }
 }

The preceding example shows how to create a RepositoryClient that connects to a
Management Console deployed on localhost. For this example to work, you must have commons-

23

Kofax Kapow Developer's Guide

logging-1.1.1.jar, commons-codec-1.4.jar, and commons-httpclient-4.1.jar included in
your classpath.

Authentication is not enabled so null is passed for both username and password. When we register the
RepositoryClient we specify the name of a cluster that exists on the Management Console. This will
then query the Management Console to get a list of RoboServers configured for this cluster, and check
every 2 minutes to see if the cluster configuration has been updated on the Management Console.

This integration allows you to create a cluster on Management Console that you can change dynamically
using the Management Console user interface. When you use a Management Console cluster with the
API usage should be exclusive, and you should not use it for scheduling robot, as this would break the two
client rule.

Under the Hood
The section will explain what is going on under the hood when you register a cluster and execute
Requests.

When you register a cluster with the request, a RequestExecutor is created behind the scene. This
RequestExecutor is stored in a Map using the cluster name as key. When a request is executed, the
provided cluster name is used to find the associated RequestExecutor and execute the request.

Let's look at a short example.

Normal execution

 public static void main(String[] args) throws InterruptedException,
 RQLException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 Request.registerCluster(cluster);
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = request.execute("MyCluster");
 System.out.println(result);
}

Now write the same example by using the hiddenRequestExecutor directly.

Under the hood execution:

public static void main(String[] args) throws InterruptedException,
 RQLException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 RequestExecutor executor = new RequestExecutor(cluster);

 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = executor.execute(request);
 System.out.println(result);
 }

24

Kofax Kapow Developer's Guide

The RequestExecutor is hidden by default, so you don't have to keep track of it. You may only create
one RequestExecutor per cluster, so if you use it directly you need to store a reference to it throughout
your application. Using Request.registerCluster(cluster) means that you can ignore the
RequestExecutor and lifecycle rules.

The RequestExecutor contains the necessary state and logic which provides the load balancing and
failover features. Using the RequestExecutor directly also offers a few extra features.

RequestExecutor Features
When the RequestExecutor is not connected to a repository, you can dynamically add or remove
RoboServers, by calling addRoboServer(..) and removeRoboServer(..). These methods modify
the distribution list used inside the RequestExecutor.

RequestExecutor.getTotalAvailableSlots() returns the number of unused execution slots
across all RoboServers in the internal distribution list.

By using these methods, you can dynamically add RoboServers to your RequestExecutor once the
number of available execution slots becomes low.

When you create the RequestExecutor, you may optionally provide an RQLEngineFactory. The
RQLEngineFactory allows you to customize which RQLProtocol is used when connecting to a
RoboServer. This is only needed under very rare circumstances. For example, if you want to use a
client certificate to increase security (see the Certificates chapter in the Kapow Administrator's Guide for
details).

Web Applications
The RequestExecutor contains a number of internal threads used for sending and receiving requests
to RoboServers, as well as pinging each known RoboServer at regular intervals. These threads are all
marked as daemon, which means that they don't prevent the JVM from stopping when the main thread
exists. See Thread JavaDoc for details on daemon threads.

If you use the RequestExecutor inside a web application, the JVM has a longer lifespan than your web
application, and you can deploy and undeploy your web application while the web container is running.
This means that a web application is responsible for stopping any threads that it has created. If the web
application does not stop a thread, a memory leak is created when you undeploy the web application. The
memory leak occurs because any objects referenced by running threads cannot be garbage collected until
the threads stop.

If you use the RequestExecutor inside a web application, your code is responsible for
shutting down these internal threads, this is done by calling Request.shutdown() or
RequestExecutor.shutdown() if your code created the RequestExecutor explicitly.

This example shows you how to use a ServletContextListener to shut down the API correctly when
a web application is undeployed. You must define the context listener in your application's web.xml.

Proper shutdown in web application:
import com.kapowtech.robosuite.api.java.repository.construct.*;
 import com.kapowtech.robosuite.api.java.rql.*;
 import com.kapowtech.robosuite.api.java.rql.construct.*;

25

Kofax Kapow Developer's Guide

 import javax.servlet.*;

 public class APIShutdownListener implements ServletContextListener {
 public void contextInitialized(ServletContextEvent servletContextEvent) {
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server},
 false);
 try {
 Request.registerCluster(cluster);
 }
 catch (ClusterAlreadyDefinedException e) {
 throw new RuntimeException(e);
 }
 }

 public void contextDestroyed(ServletContextEvent servletContextEvent) {
 Request.shutdown();
 }
 }

contextDestroyed is called when the web container un-deploys the application. Here we call
Request.shutdown() to ensure that all internal threads in the hidden RequestExecutor are stopped
correctly.

Since contextInitialized can't throw any unchecked exceptions we have to wrap the
ClusterAlreadyDefinedException in a RunTimeException. Developers may be tempted to
ignore the ClusterAlreadyDefinedException at this location, because they claim that it cannot be
thrown, as our application has not defined any other clusters. However, due to the class loader hierarchy
in Java web containers it is actually possible to get this exception if the application is deployed twice. It will
only occur if the API jar file was loaded by a common class loader and not by the individual application's
class loader.

API Debugging
Although this is rarely needed, the API can provide additional information for debugging purposes. To
enable API debugging, you need to configure the system property DEBUG_ON. The value of this property
must be a package/class name in the API.

For instance, if you are interested in the data transmissions between the API and RoboServer, you could
ask for debugging information for package com.kapowtech.robosuite.api.java.rql.io. While
you are developing, do this by directly setting the system property in code:

Enabling Debug:

 System.setProperty("DEBUG_ON", "com.kapowtech.robosuite.api.java.rql.io");
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 Request.registerCluster(cluster);

If you are debugging an application in production, you would define the system property via the command
line.

Enabling Debug:

26

Kofax Kapow Developer's Guide

java -DDEBUG_ON=com.kapowtech.robosuite.api.java.rql.io Tutorial1

If you are interested in debugging from multiple packages, separate the package names by commas.
Instead of a package name, you can provide the argument ALL, to have debugging from all packages
printed.

Repository API
The Repository API allows you to query the Management Console's Repository, to get a list of projects,
robots and the input required to call a robot. It also allows you to programmatically deploy robots, types
and resource files.

Dependencies
To use the Repository API, you need the following libraries in the API/robosuite-java-api/lib
folder inside your Kofax Kapow installation folder.

• commons-codec-1.4.jar

• commons-httpclient-4.1.jar, or newer
• commons-logging-1.1.1.jar

• not-yet-commons-ssl-0.3.17.jar or newer: if your Management Console must be accessed
through HTTPS

• dom4j-1.6.1.jar

• xstream-1.4.7.jar

Use Java 8 or later.

Repository Client
Communication with the repository is achieved through the RepositoryClient in the
com.kapowtech.robosuite.api.java.repository.engine.

Create RepositoryClient:

 public static void main(String[] args) {

 String username = "admin";
 String password = "admin";
 try {
 RepositoryClient client = RepositoryClientFactory.
 createRepositoryClient("http://localhost:50080/",
 username, password);
 Project[] projects = client.getProjects();
 for (Project project : projects) {
 System.out.println(project.getName());
 }
 }
 }

Here we see a RepositoryClient configured to connect to Management Console's repository on
http://localhost:50080/, with a username and password.

27

Kofax Kapow Developer's Guide

Once the RepositoryClient is created, we use the getProjects() method to query the
repository for a list of projects. Notice that when calling any of the RepositoryClient methods, a
RepositoryClientException is thrown if an error occurs.

The RepositoryClient has the following eleven methods.

Methods of the RepositoryClient:

Method signature Description

void deleteResource(String projectName,
String resourceName, boolean silent)

Deletes a resource from a project. If silent is true, no
error is generated if the resource does not exist. The
resourceName argument uses the full path of the
resource.

void deleteRobot(String projectName,
String robotName, boolean silent)

Deletes a robot from a project. The robotName
argument uses the full path of the robot.

void deleteSnippet(String projectName,
String snippetName, boolean silent)

Deletes a snippet from a project. The snippetName
argument uses the full path of the snippet.

void deleteType(String projectName, String
modelName, boolean silent)

Deletes a type from a project. The modelName argument
uses the full path of the type.

void deployLibrary(String projectName,
EmbeddedFileBasedRobotLibrary library,
boolean failIfExists)

Deploys a library to the server. Robots, types and
resources are overridden unless failIfExists is true.

void deployResource(String projectName,
String resourceName, byte[] resourceBytes,
boolean failIfExists)

Deploys a resource to a project. If a resource with the
given name already exists, it can be overridden by
setting failIfExists to false. The resourceName
argument uses the full path of the resource.

void deployRobot(String projectName,
String robotName, byte[] robotBytes,
boolean failIfExists)

Deploys a robot to a project. If a robot with the given
name already exists, it can be overridden by setting
failIfExists to false. The robotName argument
uses the full path of the robot.

void deploySnippet(String projectName,
String snippetName, byte[] snippetBytes,
boolean failIfExists)

Deploys a snippet to a project. If a snippet with the given
name already exists, it can be overridden by setting
failIfExists to false. The snippetName argument
uses the full path of the snippet.

void deployType(String projectName, String
typeName, byte[] typeBytes, boolean
failIfExists)

Deploys a type to a project. If a type with the given
name already exists, it can be overridden by setting
failIfExists to false. The typeName argument uses
the full path of the type.

Project[] getProjects() Returns the projects that exist in this repository.

Cluster[] getRoboServerClusters() Returns a list of clusters and online(valid) RoboServers
that are registered with the Management Console
running the repository.

Cluster[] getRoboServerClusters(boolean
onlineRoboServer)

Returns a list of clusters and RoboServers that are
registered with the Management Console. Use the
onlineRoboServer flag to indicate if the list of clusters
should include only RoboSevers that are online or all of
the RoboServers.

28

Kofax Kapow Developer's Guide

Method signature Description

Cluster addRoboServer(String clusterName,
int portNumber, String host)

Adds a new RoboServer to a cluster.

Robot[] getRobotsInProject(String
projectName)

Returns the full path of the robots available in the project.

RobotSignature getRobotSignature(String
projectName, String robotName)

Returns the robot signature with the full path of the robot,
as well as the input variables required to execute this
robot and a list of the types it may return or store.

RepositoryFolder
getProjectInventory(String projectName)

Returns the entire tree of folders and files from the
repository.

RepositoryFolder getFolderInventory(String
projectName, String folderPath)

Returns the folders and files of the subfolder in the
specified project from the repository.

RepositoryFolder getFileInventory(String
projectName, String folderPath, String
fileName, RepositoryFile.Type fileType)

Gets the file and the referenced files from the
management console. Note that the file inventory is
wrapped in a RepositoryFolder to get references.

void deleteFile(RepositoryFile file, bool
silent)

Deletes the specified file from the repository.

Date getCurrentDate() Returns current date and time of the Management
Console.

byte[] getBytes(RepositoryFile file) Returns the size in bytes of the specified file in the
repository.

String computeChecksum(byte[] bytes) Returns the checksum of the specified file to verify data
integrity.

void updateFile(RepositoryFile file,
byte[] bytes)

Updates the specified file in the repository with new
bytes.

void moveFile (RepositoryFile sourceFile,
String destFolderPath)

Moves the specified file from the repository to a folder
specified in destFolderPath.

void renameRobot(RepositoryFile robotFile,
String newName)

Renames the specified robot file.

void deleteFolder(String projectName,
String folderPath)

Deletes the specified folder in the repository.

void deleteRoboServer(String clusterName,
RoboServer roboServer)

Deletes a RoboServer.

29

Kofax Kapow Developer's Guide

Method signature Description

Map<String, String> getInfo() Returns information about the Management Console and
the Repository API
The method returns a mapping of the following:
• "application" to the version of the Management

Console containing major, minor and dot version, for
example, 10.3.1

• "repository" to the ID of the latest DTD used
by the Repository API, such as: //Kapow
Technologies//DTD Repository 1.5//EN

• "rql" to the ID of the latest DTD used by the
Robot Query Language API, such as: //Kapow
Technologies//DTD RoboSuite Robot Query
Language 1.13//EN

Note The full path is relative to your project folder.

Proxy servers must be specified explicitly when creating the RepositoryClient. Standard http proxy
servers without authentication are supported. NTLM proxy servers with authentication are also supported.

Check the RepositoryClient JavaDoc for additional details.

Deployment via Repository Client
The following example shows how to deploy a robot and a type from the local file system using the
RepositoryClient.

Deployment using RepositoryClient:

String user = "test";
 String password = "test1234";
 RepositoryClient client = new RepositoryClient("http://localhost:50080", user,
 password);
 try {
 FileInputStream robotStream = new FileInputStream
 ("c:\\MyRobots\\Library\\Test.robot");
 FileInputStream typeStream = new FileInputStream
 ("c:\\MyRobots\\Library\\Test.type");

 // Use the Kapow Java APIs StreamUtil to convert InputStream to byte[].
 // For production we recommend IOUtils.toByteArray(InputStream i)
 in the commons-io library from apache.
 byte[] robotBytes = StreamUtil.readStream(robotStream).toByteArray();
 byte[] typeBytes = StreamUtil.readStream(typeStream).toByteArray();

 // we assume that no one has deleted the Default project
 client.deployRobot("Default project", "Test.robot", robotBytes, true);
 client.deployType("Default project", "Test.type", typeBytes, true);
 }
 catch (FileNotFoundException e) {
 System.out.println("Could not load file from disk " + e.getMessage());
 }
 catch (IOException e) {
 System.out.println("Could not read bytes from stream " + e.getMessage());

30

Kofax Kapow Developer's Guide

 }
 catch (FileAlreadyExistsException e) {
 // either the type or file already exist in the give project
 System.out.println(e.getMessage());
 }

Repository Rest API
The repository API is actually a group of restful services (and URLs where data can be posted).

All the repository client methods that retrieve information from the repository send XML to the Repository,
and the Repository responds with XML. All deploy methods post bytes to the Repository (information
encoded in URL) and the Repository returns XML to acknowledge. The format of the XML sent and
received is governed by a DTD found at www.kapowtech.com.

Here is an example of all the XML based requests. All messages must start with the following declaration:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE repository-request PUBLIC "-//Kapow Technologies//
DTD Repository 1.3//EN" "http://www.kapowtech.com/robosuite/
repository_1_5.dtd">

If the Management Console is deployed at http://localhost:8080/ManagementConsole,
the requests must be posted to http://localhost:8080/ManagementConsole/secure/
RepositoryAPI?format=xml

Snippets
A number of XML snippets are used throughout the API and the following are snippets used in the
examples. We recommend studying the DTD to understand the structure of the data.
When sending requests, we often need to describe a file. Similarly, responses contain data about a file.
The following table shows snippets that are found shortened in the examples. The constructs have been
added to the 1.5 DTD to assist in project synchronization between Design Studio and Management
Console.

Snippet Name Code

repository-file-request <repository-file-request> <project-
name>Default project</project-name>
<name>ExName</name> <type>snippet</
type> <path>subfolder</path> <last-
modified>2015-02-01 19:26:12.321</last-
modified> <last-modified-by>username</
last-modified-by> <checksum>a342ddaf</
checksum> </repository-file-request>

repository-file <repository-file><name>filename</
name> <type>ROBOT</name><last-
modified>2015-02-01 19:26:12.321</last-
modified><last-modified-by>username</
last-modified-by><checksum>a342ddaf</
checksum><dependencies><dependency><name>exsnippet</
name><type>snippet</type></dependency> </
dependencies></repository-file>

31

http://www.kapowtech.com/robosuite/repository_1_3.dtd

Kofax Kapow Developer's Guide

REST Operations

Method Example Request Example Response

delete-file (robot) <repository-request> <delete-
file file-type="robot"
silent="true"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><delete-
successful/></repository-
response>

delete-file (type) <repository-request> <delete-
file file-type="type"
silent="false"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><error
type="file-not-found">Could
not find a Type named
InputA.type in project
'Default project'</error></
repository-response>

delete-file (snippet) <repository-request> <delete-
file file-type="snippet"
silent="true"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><delete-
successful/></repository-
response>

delete-file (resource) <repository-request> <delete-
file file-type="resource"
silent="true"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><delete-
successful/></repository-
response>

get-projects <repository-request> <get-
projects/> </repository-
request>

<repository-response><project-
list><project-name>Default
project</project-name></
project-list></repository-
response>

get-robots-in-project <repository-request> <get-
robots-in-project> <project-
name>Default project</project-
name> </get-robots-in-project>
</repository-request>

<repository-response><robot-
list><robot><robot-
name>DoNothing.robot</
robot-name><version>7.2</
version><last-
modified>2011-10-11
18:24:12.648</last-modified></
robot></robot-list></
repository-response>

32

Kofax Kapow Developer's Guide

Method Example Request Example Response

get-robot-signature <repository-request> <get-
robot-signature> <project-
name>Default project</
project-name> <robot-
name>DoNothing.robot</robot-
name> </get-robot-signature>
</repository-request>

<repository-response><robot-
signature><robot-
name>DoNothing.robot</
robot-name><version>7.2</
version><last-
modified>2011-10-11
18:24:12.648</last-
modified><input-object-
list><input-object><variable-
name>InputA</variable-
name><type-name>InputA</
type-name><input-
attribute-list><input-
attribute><attribute-
name>aString</attribute-
name><attribute-type>Short
Text</attribute-type></
input-attribute><input-
attribute><attribute-
name>anInt</attribute-
name><attribute-type>Integer</
attribute-type></
input-attribute><input-
attribute><attribute-
name>aNumber</attribute-
name><attribute-type>Number</
attribute-type></
input-attribute><input-
attribute><attribute-
name>aSession</attribute-
name><attribute-type>Session</
attribute-type></
input-attribute><input-
attribute><attribute-
name>aBoolean</attribute-
name><attribute-type>Boolean</
attribute-type></
input-attribute><input-
attribute><attribute-
name>aDate</attribute-
name><attribute-type>Date</
attribute-type></
input-attribute><input-
attribute><attribute-
name>aCharacter</
attribute-name><attribute-
type>Character</attribute-
type></input-attribute><input-
attribute><attribute-
name>anImage</attribute-
name><attribute-type>Image</
attribute-type></input-
attribute></input-attribute-
list></input-object><input-
object><variable-name>InputB</
variable-name><type-
name>InputB</type-
name><input-attribute-
list><input-attribute
required="true"><attribute-
name>aString</attribute-
name><attribute-type>Short
Text</attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>anInt</attribute-
name><attribute-type>Integer</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>aNumber</attribute-
name><attribute-type>Number</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>aSession</attribute-
name><attribute-type>Session</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>aBoolean</attribute-
name><attribute-type>Boolean</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>aDate</attribute-
name><attribute-type>Date</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>aCharacter</
attribute-name><attribute-
type>Character</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>anImage</attribute-
name><attribute-type>Image</
attribute-type></input-
attribute></input-attribute-
list></input-object></
input-object-list><returned-
type-list><returned-
type><type-name>OutputA</
type-name><returned-
attribute-list><returned-
attribute><attribute-
name>aString</attribute-
name><attribute-type>Short
Text</attribute-type></
returned-attribute></
returned-attribute-list></
returned-type></returned-type-
list><stored-type-list/></
robot-signature></repository-
response>

33

Kofax Kapow Developer's Guide

Method Example Request Example Response

get-clusters <repository-request> <get-
clusters/> </repository-
request>

<repository-
response><clusters><cluster
name="Cluster 1"
ssl="false"><roboserver
host="localhost" port="50000"/
></cluster></clusters></
repository-response>

get-current-date <repository-request> <get-
current-date/> </repository-
request>

<repository-response>
<current-date>2015-02-01
19:26:12.321</current-date> </
repository-response>

get-bytes <repository-request> <get-
bytes> <repository-file-
request>EXAMPLE</repository-
file-request> </get-bytes> </
repository-request>

<repository-response> <file-
content> <file-bytes><!
[CDATA[--- BASE 64 Encoded
file content ---]]> </file-
bytes> </file-content> </
repository-response>

get-project-inventory <repository-request> <get-
project-inventory> <project-
name>Default project</project-
name> </get-project-inventory>
</repository-request>

<repository-response>
<repository-folder> <path></
path> <sub-folders>
-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero,
one or more repository-
file elements -- </files>
<references> -- zero, one or
more repository-file elements
needed by robots in folder --
</references> </repository-
folder> </repository-response>

get-folder-inventory <repository-request> <get-
folder-inventory> <project-
name>Default project</project-
name> <path>subfolder</path>
</get-folder-inventory> </
repository-request>

<repository-response>
<repository-folder> <path></
path> <sub-folders>
-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero,
one or more repository-
file elements -- </files>
<references> -- zero, one or
more repository-file elements
needed by robots in folder --
</references> </repository-
folder> </repository-response>

34

Kofax Kapow Developer's Guide

Method Example Request Example Response

get-file-inventory <repository-request> <get-
file-inventory> <project-
name>Default project</project-
name> <path>subfolder</
path> <name>robotname</name>
<type>robot</type> </get-
file-inventory> </repository-
request>

<repository-response>
<repository-folder> <path></
path> <sub-folders>
-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero,
one or more repository-
file elements -- </files>
<references> -- zero, one or
more repository-file elements
needed by robots in folder --
</references> </repository-
folder> </repository-response>

update-file <repository-request> <update-
file> <repository-file-
request>...</repository-
file-request> <file-bytes><!
[CDATA[--- BASE 64 Encoded
file content ---]]> </update-
file> </repository-request>

<repository-response> <update-
successful/> </repository-
response>

get-clusters <repository-request>
<get-clusters online-
roboserver='true'/> </
repository-request>

<repository-response>
<clusters> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> </cluster>
</clusters> </repository-
response>

add-roboserver <repository-request> <add-
roboserver> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> </cluster>
<roboserver host='localhost'
port='50001' primary='true'/
> </add-roboserver> </
repository-request>

<repository-response>
<clusters> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> <roboserver
host='localhost' port='50001'
primary='true'/> </cluster>
</clusters> </repository-
response>

delete-roboserver <repository-request> <add-
roboserver> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> <roboserver
host='localhost' port='50001'
primary='true'/> </cluster>
<roboserver host='localhost'
port='50001' primary='true'/
> </add-roboserver> </
repository-request>

<repository-response>
<cluster name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> </cluster> </
repository-response>

35

Kofax Kapow Developer's Guide

Method Example Request Example Response

delete-folder <repository-request> <delete-
folder> <project-name>Default
project</project-name>
<path>path/to/empty/folder</
path> </delete-folder> </
repository-request>

<repository-response> <delete-
successful/> </repository-
response>

move-file <repository-request> <move-
file> <repository-file-
request>...</repository-
file-request> <path>new/
destination/path</path> </
move-file> </repository-
request>

<repository-response> <update-
successful/> </repository-
response>

Rename-robot <repository-request> <rename-
robot> <repository-file-
request>...</repository-
file-request> <file-
name>newnameofrobot</file-
name> </rename-robot> </
repository-request>

<repository-response> <update-
successful/> </repository-
response>

Note Robot, Type, Snippet, and Resource names must be specified as full path. The full path is relative
to your project folder.

The deployment is done by posting the raw bytes (the octet-stream is sent as a post body) to the following
URLs. Here is an example where the repository is deployed on http://localhost:8080/ManagementConsole

Methods of the deploy operations:

Operation URL

deploy robot http://localhost:8080/ManagementConsole/secure/RepositoryAPI?
format=bytes&operation=deployRobot&projectName=Default
project&fileName=DoNothing.robot&failIfExists=true

deploy type http://localhost:8080/ManagementConsole/secure/RepositoryAPI?
format=bytes&operation=deployType&projectName=Default
project&fileName=InputA.type&failIfExists=true

deploy Snippet http://localhost:8080/ManagementConsole/secure/RepositoryAPI?
format=bytes&operation=deploySnippet&projectName=Default
project&fileName=A.snippet&failIfExists=true

deploy resource http://localhost:8080/ManagementConsole/secure/RepositoryAPI?
format=bytes&operation=deployResource&projectName=Default
project&fileName=resource.txt&failIfExists=true

deploy library http://localhost:8080/ManagementConsole/secure/RepositoryAPI?
format=bytes&operation=deployLibrary&projectName=Default
project&fileName=NA&failIfExists=true

If authentication is enabled on Management Console, the URL http://localhost:8080/
ManagementConsole/secure/RepositoryAPI is protected by basic authentication.

36

Kofax Kapow Developer's Guide

This allows you to include credentials in the URL in the following manner: http://
username:password@localhost:8080/ManagementConsole/secure/RepositoryAPI.

37

Chapter 2

.NET Programmer's Guide

This chapter describes how to execute Robots using the Kapow .NET API. The guide assumes that
you have completed the Design Studio tutorials and know how to write simple Robots, and that you are
familiar with the C# programming language.

Details about specific classes are found in the compiled help, robosuite-dotnet-api.chm located in
\API\robosuite-dotnet-api\docs inside the Kapow installation folder.

.Net Basics
By using the .NET API, any .NET-based application (.NET 4.0 required) can become a client to a
RoboServer. In addition to running robots that store data in a database, you can also have the robots
return data directly back to the client application. Here are some examples:

• Use multiple robots to do a search that aggregates results from multiple sources in real time.
• Run a robot in response to an event on your application back end. For instance, run a robot when a

new user signs up to create accounts on web-based systems not integrated directly into your back end.

This guide introduces the core classes, and how to use them for executing robots. It also describes how to
provide input to robots and control their execution on a RoboServer.

The .NET API is a .dll file that is located in /API/robosuite-dotnet-api/lib/robosuite-
dotnet-api.dll inside the Kofax Kapow installation folder (see the "Important Folders in Kapow"
topic in the Installation Guide for details). All examples in this guide can be found in /API/robosuite-
dotnet-api/examples. log4net.dll is a required third-party library located next to the .NET API file.

First Example
Let's start by looking at the code required to execute the robot named NewsMagazine.robot, which
is located in the Tutorials folder of the default project. The robot outputs its results using the Return
Value step action, which makes it easy to handle the output programmatically using the API. Other robots
(typically those run in a schedule by the Management Console) store their data directly in a database
using the Store in Database step action, in which case data collected by the robot will not be returned to
the API client.

In the following example, we will look at how to execute the NewsMagazine robot and process the output
programmatically.

Execute a Robot without input:
using System;
 using System.Collections.Generic;
 using System.Text;

38

Kofax Kapow Developer's Guide

 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Repository.Construct;
 using Com.KapowTech.RoboSuite.Api.Construct;

 namespace Examples
 {
 class Program
 {
 static void Main(string[] args)
 {
 var server = new RoboServer("localhost", 50000);
 var ssl = false;
 var cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);

 Request.RegisterCluster(cluster); // you can only register a cluster
 once per application

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();
 RqlResult result = request.Execute("MyCluster");

 foreach (RqlObject value in result.GetOutputObjectsByName("Post")) {
 var title = value["title"];
 var preview = value["preview"];
 Console.WriteLine(title + ", " + preview);
 }
 Console.ReadKey();
 }
 }
 }

Let's start by looking at the classes involved and their responsibilities.

RoboServer This is a simple value object that identifies a RoboServer which can execute
robots. Each RoboServer must be activated by a Management Console and
assigned KCU before use.

Cluster A cluster is a group of RoboServer functioning as a single logical unit.

Request This class is used to construct the robot request. Before you can execute any
requests you must register a cluster with the Request class.

DefaultRobotLibrary A robot library instructs RoboServer where to find the robot identified in the
request. Later examples will explore the various robot library types and when/
how to use them.

RQLResult This contains the result of a robot execution. The result contains value
responses, log and server messages.

RQLObject Each value that is returned from a robot using the Return Value action can be
accessed as an RQLObject.

Now let's go through each line in the example and look at the specifics.

The first line tells the API that our RoboServer is running on localhost port 50000.
var server = new RoboServer("localhost", 50000);

The following lines define a cluster with a single RoboServer. The cluster is registered with the Request
class, allowing you to execute request on this cluster. Each cluster can only be registered once per
application, which is done during the initialization of the application.

39

Kofax Kapow Developer's Guide

Registering a cluster:
var ssl = false;
 var cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);
 Request.RegisterCluster(cluster);

The followed code creates a request that executes the robot named NewsMagazine.robot located
at Library:/Tutorials Library:/ refers to the robot Library configured for the request. Here the
DefaultRobotLibrary is used, which instructs the RoboServer to look for the robot in the servers local
file system. See Robot Libraries for details on how to use robot libraries.
var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();

The next line executes the robot on the cluster named MyCluster (the cluster we previously registered)
and returns the result once the robot is done. If an error occurs while the robot is executing an exception
will be thrown here.
RqlResult result = request.Execute("MyCluster");

Finally we process the extracted values. First we get all extracted values of the type named Post , and
iterate through them. For each RQLObject we access the attributes of the Post type, and print the result.
We will look at attributes and mappings in a later section.

 foreach (RqlObject value in result.GetOutputObjectsByName("Post")) {
 var title = value["title"];
 var preview = value["preview"];
 Console.WriteLine(title + ", " + preview);

Robot Input
Most robots executed through the API will be parametrized through input, such as a search keyword,
or login credentials. Input to a robot is part of the request to RoboServer, and is provided using the
createInputVariable method on the request. Let us look at a short code fragment.

Input using implicit RQLObjectBuilder

 var request = new Request("Library:/Tutorials/Input.robot");
 request.CreateInputVariable("userLogin").SetAttributeEntry
 ("username", "scott").SetAttributeEntry("password", "tiger");

In the preceding code we create a Request and use CreateInputVariable to create an input variable
named userLogin. We then use setAttribute to configure the username and password attributes of
the input variable.

The preceding example is a common shorthand notation, but can also be expressed in move detail by
using the RqlObjectBuilder:
 var request = new Request("Library:/NewsMagazine.robot");
 RqlObjectBuilder userLogin = request.CreateInputVariable("userLogin");
 userLogin.SetAttributeEntry("username", "scott");
 userLogin.SetAttributeEntry("password", "tiger");

The two examples are identical. The first utilizes the cascading method invocation on the anonymous
RqlObjectBuilder and is therefore shorter.

40

Kofax Kapow Developer's Guide

When RoboServer receives this request the following occurs:
• RoboServer loads Input.robot (from whatever RobotLibrary is configured for the request).
• RoboServer verifies that the robot has a variable named userLogin and that this variable is marked

as input.
• RoboServer now verifies that the attributes we have configured using setAttribute are compatible

with the type of variable userLogin. As a result the type must have attributes named username and
password and that these must both be text-based attributes (the next section describes the mapping
between API and Design Studio attributes).

• If all input variables are compatible, RoboServer will start executing the robot.

If a robot requires multiple input variables, you must create all of them to execute the robot. You only have
to configure required attributes; any no-required attributes that you do not configure through the API will
just have a null value. If you have a robot that requires login to both Facebook and Twitter, you could
define the input as follows.

 Request request = new Request("Library:/Input.robot");
 request.CreateInputVariable("facebook").SetAttributeEntry
 ("username", "scott").SetAttributeEntry("password", "facebook123");
 request.CreateInputVariable("twitter").SetAttributeEntry
 ("username", "scott").SetAttributeEntry("password", "twitter123");

Attribute Types
When you define a new type in Design Studio, you select an attribute type for each attribute. Some
attributes can contain text, like Short text, Long Text, Password, HTML, XML, and when used inside a
robot, there may be requirements to the text stored in these attributes. If you store text in a XML attribute,
the text must be a valid XML document. This validation occurs when the type is used inside a robot, but
since the API does not know anything about the type, it does not validate attribute values in the same
manner. As a result the API only has 8 attribute types versus the 19 available in Design Studio. This table
shows the mapping between the API and Design Studio attribute types.

API to Design Studio mapping

API Attribute Type Design Studio Attribute Type

Text Short Text, Long Text, Password, HTML, XML, Properties, Language, Country,
Currency, Refind Key

Integer Integer

Boolean Boolean

Number Number

Character Character

Date Date

Session Session

Binary Binary, Image, PDF

The API attribute types are then mapped to .NET in the following way.

41

Kofax Kapow Developer's Guide

.Net Types for Attributes

API Attribute Type Java Class

Text System.String (string)

Integer System.Int64

Boolean System.Boolean (bool)

Number System.Double (double)

Character System.Char (char)

Date System.DateTime

Session Com.Kapowtech.Robosuite.Api.Construct.Session

Binary Com.Kapowtech.Robosuite.Api.Construct.Binary

The RqlObjectBuilder setAttribute method is overloaded so you do not need to specify the
attribute type explicitly when configuring an attribute through the API, as long as the right .NET class
is used as an argument. Here is an example that shows how to set the attributes for an object with all
possible (Design Studio) attribute types.

Recommended usage of setAttribute:

 RqlObjectBuilder inputBuilder = request.CreateInputVariable("AllTypes");
 inputBuilder.SetAttributeEntry("anInt", 42L);
 inputBuilder.SetAttributeEntry("aNumber", 12.34d);
 inputBuilder.SetAttributeEntry("aBoolean", true);
 inputBuilder.SetAttributeEntry("aCharacter", 'c');
 inputBuilder.SetAttributeEntry("aShortText", "some text");
 inputBuilder.SetAttributeEntry("aLongText", "a longer text");
 inputBuilder.SetAttributeEntry("aPassword", "secret");
 inputBuilder.SetAttributeEntry("aHTML", "<html>bla</html>");
 inputBuilder.SetAttributeEntry("anXML", "<tag>text</tag>");
 inputBuilder.SetAttributeEntry("aDate", DateTime.Now);
 inputBuilder.SetAttributeEntry("aBinary", (Binary) null);
 inputBuilder.SetAttributeEntry("aPDF", (Binary)null);
 inputBuilder.SetAttributeEntry("anImage", (Binary)null);
 inputBuilder.SetAttributeEntry("aProperties", "name=value\nname2=value2");
 inputBuilder.SetAttributeEntry("aSession", (Session)null);
 inputBuilder.SetAttributeEntry("aCurrency", "USD");
 inputBuilder.SetAttributeEntry("aCountry", "US");
 inputBuilder.SetAttributeEntry("aLanguage", "en");
 inputBuilder.SetAttributeEntry("aRefindKey", "Never use this as input");

In the preceding example we have to cast null values, because the C# compiler cannot otherwise
determine which of the overloaded version of SetAttributeEntry method we want to call. However
since unconfigured attributes will automatically be null, you never need to set null explicitly.

It is possible to specify the Attribute and AttributeType explicitly when creating input using the API.
This approach is not recommended, but may be needed in rare cases, and would look like this.

Not recommended usage of setAttribute

 RqlObjectBuilder inputBuilder = request.CreateInputVariable("alltypes");
 inputBuilder.SetAttributeEntry(new AttributeEntry("anInt", "42",
 AttributeEntryType.Integer));

42

Kofax Kapow Developer's Guide

 inputBuilder.SetAttributeEntry(new AttributeEntry("aNumber", "12.34",
 AttributeEntryType.Number));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aBoolean", "true",
 AttributeEntryType.Boolean));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aCharacter", "c",
 AttributeEntryType.Character));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aShortText", "some text",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aLongText", "a longer text",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aPassword", "secret",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aHTML", "<html>bla</html>",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("anXML", "<tag>text</tag>",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aDate",
 "2012-01-15 23:59:59.123", AttributeEntryType.Date));

 inputBuilder.SetAttributeEntry(new AttributeEntry("aBinary", null,
 AttributeEntryType.Binary));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aPDF", null,
 AttributeEntryType.Binary));
 inputBuilder.SetAttributeEntry(new AttributeEntry("anImage", null,
 AttributeEntryType.Binary));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aProperties",
 "name=value\nname2=value2", AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aCurrency", "USD",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aCountry", "US",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aLanguage", "en",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aRefindKey",
 "Never use this as input", AttributeEntryType.Text));

All attribute values must be provided in the form of strings. The string values are then converted to the
appropriate .NET objects based on the AttributeEntryType provided. This is only useful if you build
other generic APIs on top of the Kapow .NET API.

Execution Parameters
In addition to the CreateInputVariable method, the Request contains a number of properties that
controls how the robot executes on a RoboServer.

Execution Control Methods on Request

MaxExecutionTime Controls the execution time (in seconds) of the robot.
When this time has elapsed, the robot will be stopped
by RoboServer. The timer does not start until the
robot begins to execute, so if the robot is queued on
RoboServer, this is not taken into account.

StopOnConnectionLost When true (default) the robot will stop if RoboServer
discovers that the connection to the client application
has been lost. You should have a very good reason
for setting this value to false; if your code is not written
to handle this, your application will not perform as
expected.

43

Kofax Kapow Developer's Guide

StopRobotOnApiException When true (default) the robot is stopped by RoboServer
after the first API exception is raised. By default most
steps in a Robot will raise an API exception if the step
fails to execute. - Configure this value on the Steps Error
Handling tab.
When set to false, the robot will continue to execute
regardless of API exceptions. However, unless your
application is using the IRobotResponseHandler
for streaming the results, an exception is still thrown by
Execute(), so be extremely cautious when setting this to
false.

Username, Password Sets the RoboServer credentials. RoboServer can
be configured to require authentication. When this
option is enabled, the client must provide credentials or
RoboServer will reject the request.

RobotLibrary Assigns a RobotLibrary to the request. A robot library
instructs RoboServer where to find the robot identified
in the request. For more examples related to the various
library types and their usage, see Robot Libraries.

ExecutionId Allows you to set the executionId for this request. If
you don't provide one, RoboServer will generate one
automatically. The execution ID is used for logging, and
also needed to stop the robot programmatically. The ID
must be globally unique (over time). If two robots use the
same execution ID, the logs will be inconsistent.
Setting this is useful if your robots are part of a larger
workflow and you already have a unique identifier in your
client application, because it allows you to join the robot
logs with the rest of the system.

setProject(String) This method is used solely for logging purposes.
The Management Console uses this field to link log
messaged to project, so the log views can filter by
project.
If your application is not using the
RepositoryRobotLibrary you should probably set
this value to inform the RoboServer logging system
which project (if any) this robot belongs to.

Robot Libraries
In Design Studio robots are grouped into projects. If you look in the file system, you will see that these
projects are represented by a folder with the only constraint that it must contain a folder named Library.

When you build the execute request for RoboServer, you identify the robot by a robot URL:

Request request = new Request("Library:/Input.robot");

Here, Library:/ is a symbolic reference to a robot library, in which the RoboServer should look for the
robot. The RobotLibrary is then specified on the builder like this:

request.setRobotLibrary(new DefaultRobotLibrary());

44

Kofax Kapow Developer's Guide

There are three different robot library implementations, which one to select depends on you deployment
environment.

Robot Libraries

Library Type Description

DefaultRobotLibrary This library configures RoboServer to look for the robot
in the current project folder. This folder is defined in the
Settings application.
If you have multiple RoboServers you must deploy your
robots on all RoboServers.
This robot library is not cached, so the robot is reloaded
from disk with every execution. This approach makes
the library usable in a development environment where
robots change often, but not suitable for a production
environment.

EmbeddedFileBasedRobotLibrary This library is embedded in the execute request sent to
RoboServer. To create this library you must create a zip
file containing the robots and all its dependencies (types,
snippets and resources). This can be done the Tools >
Create Robot Library File menu in Design Studio.
The library is sent with every request, which adds some
overhead for large libraries, but the libraries are cached
on RoboServer, which offers best possible performance.
One strength is that robots and code can be deployed
as a single unit, which offers clean migration from QA
environment to production environment. However, if the
robots change often you will have to redeploy them often.
You can use the following code to configure the
embedded robot library for your request.

var request = new Request
 ("Library:/Tutorials/NewsMagazine.
 robot");
 var stream = new FileStream
 ("c:\\embeddedLibrary.robotlib",
 FileMode.Open);
 request.RobotLibrary =
 new EmbeddedFileBasedRobotLibrary
 (stream);

45

Kofax Kapow Developer's Guide

Library Type Description

RepositoryRobotLibrary This is the most flexible RobotLibrary.
This library uses the Management Console's built-in
repository as a robot library. When you use this library,
RoboServer will contact the Management Console which
will send a robot library containing the robot and its
dependencies.
Caching occurs on a per robot basis, inside both
Management Console and RoboServer. Inside
Management Console, the generated library is
cached based on the robot and its dependencies. On
RoboServer, the cache is based on a timeout, so it
does not have to ask the Management Console for
each request. In addition, the library loading between
RoboServer and Management Console uses HTTP
public/private caching, to further reduce bandwidth.
If NewsMagazine.robot is uploaded to the
Management Console, you can use the repository robot
library when executing the robot:

var request = new Request
 ("Library:/Tutorials/NewsMagazine.
 robot");
 request.RobotLibrary =
 new RepositoryRobotLibrary
 ("http://localhost:50080",
 "Default Project", 60000);

This will instruct RoboServer to load the robot from a
local Management Console and cache it for one minute
before checking with the Management Console to see
if a new version of the robot (it's type and snippets) is
available.
In addition, any resource loaded through the Library:/
protocol, will cause RoboServer request the resource
directly from the Management Console.

.NET Advanced
This section describes advanced API features, including output streaming, logging and SSL configuration,
as well as parallel execution.

Load Distribution
Inside the RequestExecutor, the executor is given an array of RoboServers. As the executor is
constructed, it tries to connect to each RoboServer. Once connected, it sends a ping request to each
RoboServer to discover how the server is configured.

Load balanced executor

 RoboServer prod = new RoboServer("prod.kapow.local", 50000);

46

Kofax Kapow Developer's Guide

 RoboServer prod2 = new RoboServer("prod2.kapow.local", 50000);
 Cluster cluster = new Cluster("Prod", new RoboServer[]{ prod, prod2}, false);
 Request.RegisterCluster(cluster);

Load is distributed to each online RoboServer in the cluster, based on the number of unused execution
slots on the RoboServer. The next request is always distributed to the RoboServer with the most available
slots. The number of available execution slots is obtained through the initial Ping response, and the
executor keeps track of each robot it starts, and when it completes. The number of execution slots on a
RoboServer is determined by the max concurrent robots setting on the Servers tab.

If a RoboServer goes offline, it will not receive any robot execution requests before it has successfully
responded to the ping request.

Two Client Rule
You should only have one API client using a given cluster of RoboServer. If you have multiple .NET
applications running robots against the same RoboServers, this will result in reduced performance.

Data Streaming
Sometimes you need to present the results from a robot execution in real-time. In such cases, you want
the API to return the extracted values immediately instead of waiting for the robot to finish its execution
and access the RqlResult.

The API offers the possibility to receive a callback every time the API receives a value that was returned
by the Robot. Do this through the IRobotResponseHandler interface.

Response streaming usingAbstractFailFastRobotResponseHandler

 using System;
 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Repository.Construct;
 using Com.KapowTech.RoboSuite.Api.Construct;
 using System.IO;
 using Com.KapowTech.RoboSuite.Api.Engine.Hotstandby;

 namespace Examples
 {

 public class DataStreaming {

 public static void Main(String[] args) {

 var server = new RoboServer("localhost", 50000);
 var cluster = new Cluster("MyCluster", new RoboServer[] { server },
 false);
 Request.RegisterCluster(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 IRobotResponseHandler handler = new SampleResponseHandler();
 request.Execute("MyCluster", handler);
 }

 }

 public class SampleResponseHandler : AbstractFailFastRobotResponseHandler

47

Kofax Kapow Developer's Guide

 {
 override public void HandleReturnedValue(RobotOutputObjectResponse
 response, IStoppable stoppable)
 {
 var title = response.OutputObject["title"];
 var preview = response.OutputObject["preview"];
 Console.WriteLine(title + ", " + preview);
 }
 }
 }

The preceding example uses the second execute method of the Request, which expects a
RobotResponseHandler in addition to the name of the cluster to execute the robot on. In this example,
create a IRobotResponseHandler by extending AbstractFailFastRobotResponseHandler,
which provides default error handling, to handle the values returned by the robot.

The handleReturnedValue method is called whenever the API receives a returned value from
RoboServer. The AbstractFailFastRobotResponseHandler used in this example, will throw
exceptions in the same way as the non-streaming execute method. This means that an exception is
thrown in response to any API exceptions generated by the robot.

The IRobotResponseHandler has several methods which can be grouped into three categories.

Robot life cycle events
Methods called when the robot's execution state change on RoboServer, such as when it starts and
finishes its execution.

Robot data events
Methods which are called when the robot returns data or errors to the API.

Additional error handling
Methods which are called either due to an error inside RoboServer or in the API.

RobotResponseHandler - robot life cycle events

Method name Description

void requestSent(RoboServer roboServer,
ExecuteRequest request)

Called when the RequestExecutor finds the server
which will execute the request.

void requestAccepted(String executionId) Called when the found RoboServer has accepts the
request and puts it into it queue.

void RobotStarted(IStoppable stoppable) Called when the RoboServer begins to execute the
robot. This usually occurs immediately after the robot is
queued, unless the RoboServer is under heavy load, or
used by multiple API clients.

void robotDone(RobotDoneEvent reason) Called when the robot is done executing on RoboServer.
The RobotDoneEvent is used to specify if the execution
terminated normally, due to an error, or if it was stopped.

48

Kofax Kapow Developer's Guide

RobotResponseHandler - robot data events

Method name Description

void
HandleReturnedValue(RobotOutputObjectResponse
response, IStoppable stoppable)

Called when the robot is executed a Return Value action
and the value has been returned via the socket to the
API.

void HandleRobotError(RobotErrorResponse
response, IStoppable stoppable)

Called when the robot raises an API exception. Under
normal circumstances the robot stops executing after
the first API exception. This behavior can be overridden
by using Request.StopRobotOnApiException =
false, in which case this method is called multiple
times. This is useful if you want a data streaming robot to
continue to execute regardless of any generated errors.

void HandleWriteLog(RobotMessageResponse
response, IStoppable stoppable)

Called if the robot executes the Write Log action. This is
useful to provide additional logging info from a robot.

RobotResponseHandler - additional error handling

Method name Description

void HandleServerError(ServerErrorResponse
response, IStoppable stoppable)

Called if RoboServer generates an error, for instance if
the server is too busy to process any requests, or if an
error occurs inside RoboServer, which prevents it from
starting the robot.

void handleError(RQLException e,
IStoppable stoppable)

Called if an error occurs inside the API. Most commonly
if the client loses the connection to RoboServer.

Many of the methods include a IStoppable object, which can be used to stop for instance in response to
a specific error or value returned.

Some of these methods allow you to throw an RQLException, if you do this you should be aware of
the consequences. The thread that calls the handler is the thread that calls Request.Execute(), this
means that any exceptions thrown will bubble up the call stack and out the execute method. If you throw
an exception in response to handleReturnedValue, handleRobotError or handleWriteLog it is
your responsibility to invoke Stoppable.stop(), or the robot may continue to execute even though the call
to Request.Execute() has completed.

Data streaming is most often used in one of the following use cases.
• Ajax based web application, where results are presented to the user in real-time. If data is not

streamed, results cannot be shown until the robot is done running.
• Robots that return so much data that the client would not be able to hold it all in memory throughout the

robot's execution.
• Processes that need to be optimized so the extracted values are processed in parallel with the robot

execution.
• Processes that store data in databases in a custom format.
• Robots that should ignore or require custom handling of API exceptions (see the following).

Response and error collecting using AbstractFailFastRobotResponseHandler:

 using System;

49

Kofax Kapow Developer's Guide

 using System.Collections;
 using System.Collections.Generic;
 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Repository.Construct;
 using Com.KapowTech.RoboSuite.Api.Construct;
 using System.IO;
 using Com.KapowTech.RoboSuite.Api.Engine.Hotstandby.Interfaces;

 namespace Examples
 {
 public class DataStreaming
 {

 public static void Main(String[] args)
 {

 var server = new RoboServer("localhost", 50000);
 var cluster = new Cluster("MyCluster", new RoboServer[] { server },
 false);
 Request.RegisterCluster(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.StopRobotOnApiException = false; // IMPORTANT!!

 ErrorCollectingRobotResponseHandler handler =
 new ErrorCollectingRobotResponseHandler();
 request.Execute("MyCluster", handler); // blocks until robot is
 done, or handler throws an exception

 Console.WriteLine("Extracted values:");
 foreach (RobotOutputObjectResponse response in handler.
 GetOutput())
 {
 var title = response.OutputObject["title"];
 var preview = response.OutputObject["preview"];
 Console.WriteLine(title + ", " + preview);
 }

 Console.WriteLine("Errors:");
 foreach (RobotErrorResponse error in handler.GetErrors())
 {
 Console.WriteLine(error.ErrorLocationCode + ", " + error.
 ErrorMessage);
 }
 }
 }

 public class ErrorCollectingRobotResponseHandler :
 AbstractFailFastRobotResponseHandler {

 private IList<RobotErrorResponse> _errors =
 new List<RobotErrorResponse>();
 private IList<RobotOutputObjectResponse> _output =
 new List<RobotOutputObjectResponse>();

 override public void HandleReturnedValue(RobotOutputObjectResponse
 response, IStoppable stoppable) {
 _output.Add(response);
 }

 override public void HandleRobotError(RobotErrorResponse response,
 IStoppable stoppable) {

50

Kofax Kapow Developer's Guide

 // do not call super as this will stop the robot
 _errors.Add(response);
 }

 public IList<RobotErrorResponse> GetErrors() {
 return _errors;
 }

 public IList<RobotOutputObjectResponse> GetOutput() {
 return _output;
 }
 }
 }

The preceding example shows how to use a IRobotResponseHandler that collects returned values
and errors. This type of handler is useful if the robot should continue to execute even when error are
encountered, which can be useful if the website is unstable and occasionally times out. Notice that
only robot errors (API exceptions) are collected by the handler. If the connection to RoboServer is lost,
Request.Execute() will still throw an RQLException (and the robot will be stopped by RoboServer).

For more details, check the IRobotResponseHandler documentation in the API\robosuite-
dotnet-api\docs folder in the Kapow installation folder.

SSL
The API communicates with RoboServer through an RQLService, which is a RoboServer component
that listens for API requests on a specific network port. When you start a RoboServer, you specify if it
should use the encrypted SSL service, or the plain socket service, or both (using two different ports). All
RoboServers in a cluster must be running the same RQLService (although the port may be different).

Assuming we have started a RoboServer with the SSL RQLService on port 50043:

RoboServer -service ssl:50043

We can use the following code:

 RoboServer server = new RoboServer("localhost", 50043);
 boolean ssl = true;
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, ssl);
 Request.RegisterCluster(cluster);

All we need to do is to create the cluster as an SSL cluster and specify the SSL port used by each
RoboServer. Now all communication between RoboServer and the API will be encrypted.

In addition to data encryption, SSL offers the possibility to verify the identity of the remote party. This
type of verification is very important on the Internet, as rogue Web sites could otherwise pretend to be
someone they are not. Most often your API client and RoboServers are on the same local network, so
you rarely need to verify the identity of the other party, but the API supports this feature should it become
necessary.

See Examples to find out how to compile and run the included SSL example.

51

Kofax Kapow Developer's Guide

Repository Integration
In the Management Console you also specify clusters of RoboServers, which are used to execute
scheduled robots, as well as robots executed as REST services. The API allows you to use
the RepositoryClient to obtain cluster information from Management Console. See the
RepositoryClient documentation for details.

Repository Integration
using System;
 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Construct;
 using Com.KapowTech.RoboSuite.Api.Repository.Engine;

 namespace Examples
 {
 public class RepositoryIntegration
 {
 public static void Main(String[] args)
 {
 string userName = "admin";
 string password = "admin";
 RepositoryClient client = new RepositoryClient
 ("http://localhost:50080", userName, password);

 Request.RegisterCluster(client, "Production");
 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 var result = request.Execute("Production");
 Console.WriteLine(result.ToString());
 }
 }
 }

The preceding example shows how to create a RepositoryClient that connects to a Management
Console deployed on localhost port 50080.

If the Management Console requires authentication, you must pass a username and password, otherwise
you may pass null for both. When we register the RepositoryClient, we specify the name of a cluster
that exists on the Management Console. This will then query the Management Console to get a list of
RoboServers configured for this cluster, and check every two minutes to see if the cluster configuration
has been updated on the Management Console.

This integration allows you to create a cluster on Management Console that you can change dynamically
using the Management Console user interface. When you use a Management Console cluster with the
API usage should be exclusive, and you should not use it for scheduling robot, as this would break the two
client rule.

Executor Logger
When you execute a request, the execute method throws an exception if a robot generates an error.
Other types of errors and warnings are reported through the ExecutorLogger interface. In the previous
examples, we have not provided any ExecutionLogger when executing robots, which means we get
the default implementation that will write to system out. Let's see how the ExecutorLogger reports if
one of our RoboServers goes offline.

52

Kofax Kapow Developer's Guide

The example configures a cluster with a RoboServer which is not online.

ExecutorLogger, offline server example:

 RoboServer rs = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("name", new RoboServer[]{rs}, false);
 Request.RegisterCluster(cluster);

If you run this example it should print the following to the console.

ExecutorLogger, offline RoboServer console output:

 RoboServer[Host=localhost, Port=50000]' went offline.
 Com.KapowTech.RoboSuite.Api.Engine.UnableToConnectException:...........

Often you don't want to have your application writing directly to System.out, in that case you can provide
a different IExecutorLogger implementation; you can do so when registering the cluster:

Use DebugExecutorLogger:
Request.RegisterCluster(cluster, new DebugExecutorLogger());

This example uses the DebugExecutorLogger() that also prints to System.out, but only if the API
debugging is enabled. Alternatively you can provide your own implementation of the ExecutorLogger to
control how error messages should be handled.

Under the Hood
This section will explain what is going on under the hood when you register a cluster and execute
requests.

When you register a cluster with the request, a RequestExecutor is created behind the scene. This
RequestExecutor is stored in a Map using the cluster name as key. When a request is executed, the
provided cluster name is used to find the associated RequestExecutor and execute the request.

Lets look at a short example.

Normal Execution

 public static void Main(String[] args)
 {
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 Request.RegisterCluster(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();
 var result = request.Execute("MyCluster");
 Console.WriteLine(result);
 }

Now write the same example by using the hiddenRequestExecutor directly.

Under the hood execution:

53

Kofax Kapow Developer's Guide

 public static void Main(String[] args)
 {
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 RequestExecutor executor = new RequestExecutor(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();
 var result = executor.Execute(request);
 Console.WriteLine(result);
 }

The RequestExecutor is hidden by default, so you do not have to keep track of it. You may only create
one RequestExecutor per cluster, so if you use it directly you need to store a reference to it throughout
your application. Using Request.RegisterCluster(cluster) means that you can ignore the
RequestExecutor and lifecycle rules.

The RequestExecutor contains the necessary state and logic which provides the load balancing and
failover features. Using the RequestExecutor directly also offers a few extra features.

Request Executor Features
When the RequestExecutor is not connected to a repository, you can dynamically add or remove
RoboServers, by calling AddRoboServer(..) and RemoveRoboServer(..). These methods
modifies the distribution list used inside the RequestExecutor.

RequestExecutor.TotalAvailableSlots property contains the number of unused execution slots
across all RoboServers in the internal distribution list.

By using these methods, you can dynamically add RoboServers to your RequestExecutor once the
number of available execution slots becomes low.

When you create the RequestExecutor, you may optionally provide an IRqlEngineFactory. The
IRqlEngineFactory allows you to customize which RQLProtocol is used when connecting to a
RoboServer. This is only needed under very rare circumstances, for instance if you want use a client
certificate to increase security. See API Client Certificates for details.

Repository API
The Repository API allows you to query the Management Console's repository to get a list of projects,
robots and the input required to call a robot. It also allows you to programmatically deploy robots, types
and resource files.

Repository Client
Communication with the repository is achieved through the RepositoryClient in the namespace
Com.KapowTech.RoboSuite.Api.Repository.Engine.

Let's look at an example .

Get Projects from Repository

54

Kofax Kapow Developer's Guide

 string UserName = "admin";
 string Password = "admin1234";
 RepositoryClient client = new RepositoryClient("http://localhost:50080/", UserName,
 Password);
 Project[] projects = client.GetProjects();
 foreach(Project p in projects) {
 Console.WriteLine(p);
 }

Here we see a RepositoryClient configured to connect to Management Console's repository on
http://localhost:50080/, with a username and password. If the Management Console is not
password protected, you must supply null for user name and password.

Once the RepositoryClient is created, we use the GetProjects() method to query the
repository for a list of projects. Notice that when calling any of the RepositoryClient methods, a
RepositoryClientException is thrown if an error occurs.

The RepositoryClient has the following eleven methods.

Methods of the RepositoryClient:

Method signature Description

void DeleteResource(string projectName,
string resourceName, boolean silent

Deletes a resource from a project. The resourceName
argument uses the full path of the resource.

void DeleteRobot(string projectName,
string robotName, boolean silent)

Deletes a robot from a project. The robotName
argument uses the full path of the robot.

void DeleteType(string projectName, string
typeName, boolean silent)

Deletes a type from a project. The typeName argument
uses the full path of the type.

void DeleteSnippet(string projectName,
string snippetName, boolean silent)

Deletes a snippet from a project. The snippetName
argument uses the full path of the snippet.

void DeployLibrary(string projectName,
EmbeddedFileBasedRobotLibrary library,
boolean failIfExists)

Deploys a library to the server. Robots, types and
resources are overridden unless failIfExists is true.

void DeployResource(string projectName,
string resourceName, byte[] resourceBytes,
boolean failIfExists)

Deploys a resource to a project. If a resource with the
given name already exists it can be overridden by setting
failIfExists to false. The resourceName argument
uses the full path of the resource.

void DeployRobot(string projectName,
string robotName, byte[] robotBytes,
boolean failIfExists)

Deploys a robot to a project. If a robot with the given
name already exists it can be overridden by setting
failIfExists to false. The robotName argument
uses the full path of the robot.

void DeployType(string projectName, string
typeName, byte[] typeBytes, boolean
failIfExists)

Deploys a type to a project. If a type with the given
name already exists it can be overridden by setting
failIfExists to false. The typeName argument uses
the full path of the resource.

void DeploySnippet(string projectName,
string snippetName, byte[] snippetBytes,
boolean failIfExists)

Deploys a snippet to a project. If a snippet with the given
name already exists it can be overridden by setting
failIfExists to false. The snippetName argument
uses the full path of the snippet.

Project[] GetProjects() Returns the projects that exist in this repository.

55

Kofax Kapow Developer's Guide

Method signature Description

Cluster[] GetRoboServerClusters() Returns a list of clusters and online (valid) RoboServers
that are registered with the Management Console
running the repository.

Cluster[] GetRoboServerClusters(boolean
onlineRoboServer)

Returns a list of clusters and RoboServers that are
registered with the Management Console. Use the
onlineRoboServer flag to indicate if the clusters
should include only RoboSevers that the are online or all
of the RoboServers.

Cluster AddRoboServer(String clusterName,
int portNumber, String host)

Adds a new RoboServer to a cluster.

Robot[] GetRobotsInProject(String
projectName)

Returns the full paths of robots available in the project.

RobotSignature GetRobotSignature(String
projectName, String robotName)

Returns the robot signature with the full path of the robot,
as well as the input variables required to execute this
robot and a list of the types it may return or store.

RepositoryFolder
GetProjectInventory(String projectName)

Returns the entire tree of folders and files from the
repository.

RepositoryFolder GetFolderInventory(String
projectName, String folderPath)

Returns the folders and files of the subfolder in the
specified project from the repository.

RepositoryFolder GetFileInventory(String
projectName, String folderPath, String
fileName, RepositoryFile.Type fileType)

Gets the file and the referenced files from the
management console. Note that the file inventory is
wrapped in a RepositoryFolder to get references.

Void DeleteFile(RepositoryFile file, bool
silent)

Deletes the specified file from the repository.

Date GetCurrentDate() Returns current date and time of the Management
Console.

byte[] GetBytes(RepositoryFile file) Returns the size in bytes of the specified file in the
repository.

ComputeChecksum(byte[] bytes) Returns the checksum of the specified file to verify data
integrity.

void UpdateFile(RepositoryFile file,
byte[] bytes)

Updates the specified file in the repository with new
bytes.

void MoveFile(RepositoryFile sourceFile,
String destFolderPath)

Moves the specified file from the repository to a folder
specified in destFolderPath.

void RenameRobot(RepositoryFile robotFile,
String newName)

Renames the specified robot file.

void DeleteFolder(String projectName,
String folderPath)

Deletes the specified folder in the repository.

void DeleteRoboServer(String clusterName,
RoboServer roboServer)

Deletes a RoboServer.

56

Kofax Kapow Developer's Guide

Method signature Description

Map<String, String> getInfo() Returns information about the Management Console and
the Repository API
The method returns a mapping of the following:
• "application" to the version of the Management

Console containing major, minor and dot version, for
example, 10.3.1

• "repository" to the ID of the latest DTD used
by the Repository API, such as: //Kapow
Technologies//DTD Repository 1.5//EN

• "rql" to the ID of the latest DTD used by the
Robot Query Language API, such as: //Kapow
Technologies//DTD RoboSuite Robot Query
Language 1.13//EN

Note The full path is relative to your project folder.

Check the .Net documentation for details. The .Net documentation is located inside you Kofax Kapow
installation at /API/robosuite-dotnet-api/docs/RoboSuite .NET API.chm.

If authentication is enabled on the repository, the request may be declined if the credentials given do not
have sufficient access.

The repository is accessed via http. When using the .Net version of the Repository API, any proxy servers
configured for Internet Explorer will be used by the Repository API.

Deployment via Repository Client
The following example shows how to deploy a robot and a type from the local file system using the
RepositoryClient.

Deploying to Repository
string user = "test";
 string password = "test1234";
 RepositoryClient client = new RepositoryClient("http://localhost:50080", user,
 password);

 byte[] robotBytes = File.ReadAllBytes("c:\\MyRobots\\Library\\Test.robot");
 byte[] typeBytes = File.ReadAllBytes("c:\\MyRobots\\Library\\Test.type");

 // we assume that no one has deleted the Default project
 client.deployRobot("Default project", "Test.robot", robotBytes, true);
 client.deployType("Default project", "Test.type", typeBytes, true);

Repository API as Rest
The repository can also be accessed via restful services.

57

Kofax Kapow Developer's Guide

Examples
The Kofax Kapow installation contains six additional API code examples, which are located in API
\robosuite-dotnet-api\example.

After completing the configuration steps, both the server and client will be configured to use SSL. Running
RunSslRobot.exe can be used to verify the configuration.

Compiling & Running the Examples
To compile the examples, run build.bat from a command prompt. This will create six .exe files that can
be run directly.
The .exe files rely on robosuite-dotnet-api.dll and log4net.dll both of which are located in the
examples directory. Both files are identical copies of the ones located in the bin folder and are copied to
this folder to make it easier to run the examples.
Each example program prints a small usage text when run without any arguments.

C# Compiler Issues
The build.bat file assumes that the C# compiler is available in the path.

.NET Framework 4.0
The API and accompanying log4net is built targeting the .NET framework 4.0 client profile. For details
on the .NET framework 4.0 client profile, see http://msdn.microsoft.com/en-us/library/
cc656912.aspx.

SSL Example
To run the SSL example RunSslRobot.exe, the RoboServer must be configured to use SSL and the
certificate has to be imported on the client machine. This topic shows you how to configure SSL using a
self-signed certificate on a windows PC running a local RoboServer.

Configure the RoboServer
1. On the computer running a RoboServer, start the RoboServer Settings application located in Start >

All Programs > Kapow.

2. In the Settings application go to the Certificates tab

3. Click Change under API and select the file API\robosuite-dotnet-api\example
\server.pfx

4. When prompted for a password type 123.

Configure the API Client
1. Run the command mmc.exe in the command line.

2. On the Console menu, click Add/Remove Snap-in.

3. Under Snap-in, double-click Certificates, and select to manage certificates for the local computer
and click Finish.

58

Kofax Kapow Developer's Guide

4. When the certificates snap-in loads, expand the node Certificates -> Trusted root Certification
Authorities, right click the Certificates node and click the menu item All tasks -> Import.
This will start the Certificate Import Wizard. When prompted for the certificate file, browse to API
\robosuite-dotnet-api\example\server.pub.cer and complete the import.

59

Chapter 3

Kapow Control Protocol

Kapow Control Protocol or KCP is an execution protocol for executing robots over Java Message Service
(JMS), using Google Protocol Buffers (Protobuf).

The KCP protocol defines a set of messages that enable you to communicate with a RoboServer. The
following messages are defined.

Message Direction Notes Queue/Topic

Message both A container, wrapping all
the following messages.

All

ExecuteRobot sending Includes a robot URL for
the RoboServer to get the
robot from the repository.

Execute

StopRobot sending Sent to interrupt a running
robot.

Control

RobotEvent receiving (START_REQUESTED
STARTED,
STOP_REQUESTED,
STOPPED, FAILED;
ENDED)

Result

ServerMessage receiving Either info or error from the
server regarding a run.

Result

RobotResult receiving A Robot Result is send
every time a return value
step is executed in the
robot.

Result

RobotRunStatus receiving Summary of run including
the number of returned
RobotResult messages.

Result

KCP communicates over three so called JMS Destinations listed in the following table.

Name Destination type Description

Execute Queue Messages to a RoboServer

Result Queue Information from RoboServers

Control Topic Broadcast to all RoboServers

The following is an example of a normal KCP life cycle.

1. An ExecuteRobot message is sent. When the message is picked up by a RoboServer, it sends a
RobotEvent (START_REQUESTED) that informs you which RoboServer is handling the execution.

60

Kofax Kapow Developer's Guide

2. START_REQUESTED is followed by a RobotEvent (STARTED). During the execution, the robot
might send multiple RobotResults that you can pick up from the result queue.

3. When the robot stops, it sends a RobotEvent (ENDED) and a RobotRunStatus that informs you
about how many results were returned.

Build a JMS Client
To use KCP you must set up the following components.
• Kapow JMS client that includes the following components:

• Management Console
• RoboServer
• JMS broker

• A JMS client api In your language (see http://activemq.apache.org for more information)
• The protocol definition file (kcp.proto).
• The Protocol Buffers compiler version 3 (proto3) that you can download from https://github.com/google/

protobuf/releases (see https://developers.google.com for more information).
• The latest version of the Protobuf.jar file.

In the following tutorials we use Java, and ActiveMQ Client to connect to the JMS broker.
• KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message
• KCP Tutorial 2: Consume Specific Results
• KCP Tutorial 3: Stop Robot Execution

KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message
In this tutorial we will compile KCP, connect to a JMS broker, and send a message. The resulting code can
be found in the Tutorial1.java file.

Prerequisites
• Install Protobuf compiler.
• Use a programming language that supports Protobuf and JMS. In this tutorial we use Java.
• Set up the language dependent Protobuf library. In this tutorial: Java protobuf.jar.
• Set up and start ActiveMQ JMS message broker.

Step 1. Create the language dependent KCP definition
From the command line run the compiler with the following parameters:
protoc --java_out=[DestinationFolder] kcp.proto

The above command creates com.kapowtech.kcp Java package structure in the destination folder with
a single file called Kcp.java. Do not change this file, it is simply a helper to create the Protobuf objects.
The package must be included in your tutorial project.

61

http://activemq.apache.org
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://developers.google.com

Kofax Kapow Developer's Guide

Step 2. Connect to the broker
A broker can be configured to connect in many different ways, such as using credentials and certificates.
In this example we assume a standard configuration of the broker, where anonymous access is allowed.
To connect we only need a broker URI.
public void run() {
try {
//Create a ConnectionFactory
ActiveMQConnectionFactory
connectionFactory = new
ActiveMQConnectionFactory(BROKER_URI);
//Create a Connection
Connection connection = connectionFactory.createConnection();
connection.start();
//Create a Session
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

The code above connects to the broker and creates a session.

Step 3. Connect to the execution queue
On this step we connect to a queue to send a message. The queue name must include the same
namespace and cluster as the RoboServer. The execution queue name consists of the following.
[NAMESPACE].KCP.[CLUSTER_NAME].Execute

For example, Kapow.KCP.Production.Execute.
private final String NAMESPACE = "Kapow" ; // Must match the namespace used by the
 RoboServer
private final String ENCODING = "KCP" ; // Must be KCP
private final String CLUSTER = "Production" ; // Must match the cluster used by the
 RoboServer
private final String EXECUTE = "Execute" ;
private final String EXECUTE_QUEUE = NAMESPACE + "." + ENCODING + "." + CLUSTER + "." +
EXECUTE ;
...
//Create the destination (Topic or Queue)
Destination destination = session.createQueue(EXECUTE_QUEUE);

The code above creates a queue if it does not exist.
When the queue is created, we add a producer and send the first message.
//Create a MessageProducer from the Session to the Topic or Queue
MessageProducer producer = session.createProducer(destination);
producer.setDeliveryMode(DeliveryMode. PERSISTENT);
//Create a message
Kcp.Message kcpMessage = createExecuteRobotMessage(); //we will get to this later
BytesMessage jmsMessage = session.createBytesMessage();
jmsMessage.writeBytes(kcpMessage.toByteArray());
jmsMessage.setStringProperty("version" , "1");
//Tell the producer to send the jms message
producer.send(jmsMessage);

When sending messages to Kapow using JMS, you must set a version property on the JMS message.
The version is the version of the KCP message format and is currently 1.
jmsMessage.setStringProperty("version", "1");

62

Kofax Kapow Developer's Guide

Step 4. Create a KCP execute message
To create an ExecuteRobot message, use ExecuteRobot and Message classes generated from
kcp.proto on Step 1. The message requires a robot url and a unique execution id. The URL must refer
to the robot in a Management Console repository as in the following example.
http://[user]:[pass]@[host]:[port]/[MCName]?project=[project name]&robot=[robotname]

Code example
private final String REPOSITORY = "http://admin:admin@localhost:8080/
ManagementConsole" ;
private final String PROJECT = "Default project" ;
private final String ROBOT = "MyTutorialRobot.robot" ;
private String executionId = UUID. randomUUID().toString(); // Must be unique across
 all clusters and time
...
// Create a RobotExecution message wrapped in a Message structure for sending.
private Kcp.Message createExecuteRobotMessage() {
Kcp.ExecuteRobot executeRobot = Kcp.ExecuteRobot. newBuilder()
.setRobotUrl(REPOSITORY + "?project=" + PROJECT + "&robot=" + ROBOT)
.setExecutionId(executionId)
// .setInput(createInputObjects()) //we will get to this in next step
.build();
return Kcp.Message. newBuilder()
.setExecuteRobot(executeRobot)
.build();
}

Refer to the code example for variables, boilerplate and context.

Step 5. Adding input objects
If you want to run robots using inputObjects, they need to be added to the KCP. In the following example
we create a MyTutorialType named myTutorialObject with three attributes as an input object.
/**
*Create the test input object myTutorialObject of the type MyTutorialType
* @return an input object
*/
private Kcp.Structure createInputObjects() {
//create a map of 3 attributes for the myTutorialObject
Map<String, Kcp.Value> attributes = new HashMap<>();
attributes.put("myInteger" , kcp.Value. newBuilder().setInteger(42).build());
attributes.put("myString" , Kcp.Value. newBuilder().setString("").build());
attributes.put("myDate" , Kcp.Value. newBuilder().setTimestamp(System.
 currentTimeMillis()).build());
//wrapping of attributes in structure
Kcp.Structure myTutorialObjectStructure = Kcp.Structure. newBuilder()
.putAllElements(attributes)
.build();
//Create a map of all the input objects in this case just a single object
Map<String, Kcp.Value> inputObjects= new HashMap<>();
//add myTutorialObject to the input object map.
inputObjects.put("myTutorialObject" ,
Kcp.Value. newBuilder().setStructure(myTutorialObjectStructure).build());
Return Kcp.Structure. newBuilder()
.putAllElements(inputObjects)
.build();
}

After input objects are specified, we need to go back to the createExecuteRobotMessage and add the
input as follows.
private Kcp.Message createExecuteRobotMessage() {

63

Kofax Kapow Developer's Guide

ExecuteRobot executeRobot = ExecuteRobot. newBuilder()
.setRobotUrl(REPOSITORY + "?project=" + P ROJECT + "&robot=" + ROBOT)
.setExecutionId(executionId)
.setInput(createMyInputs())
.build();
return Kcp.Message. newBuilder()
.setExecuteRobot(executeRobot)
.build();
}

Now you can send execute messages that start robot runs. The next step is to retrieve the robot results.

Step 6: Receiving robot results
A robot run can return RobotResults, RobotRunStatus and RobotEvent messages during its
execution. To receive messages we need to set up a consumer on the result queue. The consumer picks
messages off the queue as they arrive, and delegate further work. The queue is named the same way as
the execute queue.
[NAMESPACE].KCP.[CLUSTER_NAME].Result

For example, Kapow.KCP.Production.Result.
In this example the consumer runs in a separate thread and keeps consuming until stopConsumer() is
called. This specific consumer consumes all messages on the result queue. You can use this if you do not
need to hand the results back to the specific executor. In KCP Tutorial 2: Consume Specific Results we
set up an execution ID for specific consumer.
In the following code we set up a connection and a consumer for the result queue.
public void run() {
try {
//Create a ConnectionFactory
ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory(BROKER_URI);
//Create a Connection
Connection connection = connectionFactory.createConnection();
connection.start();
connection.setExceptionListener(this);
//Create a Session
Session session = connection.createSession(false , Session. AUTO_ACKNOWLEDGE);
//Create the destination
Destination destination = session.createQueue(RESULT_QUEUE);
//Create a MessageConsumer from the Session to the Topic or Queue
MessageConsumer consumer = session.createConsumer(destination);
...

Then we add the main consume loop where we consume the messages and parse them depending on
the type of a message.
...
while (consume) {
// Wait for a message for 1 second
Message message = consumer.receive(1000);
if (message instanceof BytesMessage) {
BytesMessage m = (BytesMessage) message;
byte [] bytes = new byte [(int) m.getBodyLength()];
m.readBytes(bytes);
Kcp.Message kcpMessage = Kcp.Message. parseFrom(bytes);
System. out.print("from sender: " + kcpMessage.getSenderId() + ": ");
switch (kcpMessage.getKindCase()){
case ROBOT_EVENT:
System. out.println("RobotEvent: " + kcpMessage.getRobotEvent().getType().name());
break ;

64

Kofax Kapow Developer's Guide

case ROBOT_RESULT:
handleResult(kcpMessage.getRobotResult());
break ;
case SERVER_MESSAGE:
System. out.println("Server Message: " +kcpMessage.getServerMessage().getMessage());
break ;
case ROBOT_RUN_STATUS:
System. out.println("RobotRunStatus Message: returned objects: "
+kcpMessage.getRobotRunStatus().getLatestResultIndex());
break ;
default :
System. out.println("unknown Message: " +kcpMessage.getKindCase().name());
}
}
}
...

The final handling of the returned data is simply unpacking the KCP object. In this example we just print
the result to the output stream.
/**
* prints out a given result
* @param result
*/
private void handleResult(Kcp.RobotResult result){
Kcp.Structure output =result.getOutput();
System. out.println("Result: object type: " + output.getTypeName() + " index: " +
 result.getIndex());
for (String key: output.getElements().keySet()) {
Kcp.Value value = output.getElements().get(key);
System. out.print(" \t " +value);
}
}

All the above examples together give you a code that can build an input object, execute a robot, and get
returned events and results from the robot.

KCP Tutorial 2: Consume Specific Results
This is a modification of KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message
and shows a different approach to consumption of messages. The source code can be found in
Tutorial2.java.

If you want to extract messages related to your execution, instead of a global consumer use message
selectors. Each message sent to the result queue has a message property with an execution ID. You can
setup a consumer for a specific execution ID with a message selector like the following.
session.createConsumer(destination, "executionId='"+_executionId+"'");

Note More complex selectors can be created using the SQL92 condition format.

...
// Create the destination
Destination destination = session.createQueue(RESULT_QUEUE);
// Create a MessageConsumer from the Session to the Topic or Queue
MessageConsumer consumer = session.createConsumer(destination, "executionId = '" +
 _executionId + "'");
while (consume) {
...

65

Kofax Kapow Developer's Guide

With the message selector, only messages related to the specific executionId are handled by the
consumer.

In KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message we set up a global
consumer. Now we move the initialization of the consumer into the run method of the producer and pass
the executionId to the consumer as follows.
...
public static class TutorialProducer implements Runnable {
...
public void run() {
//Start the consumer,
Consumer consumer = new Consumer(executionId);
thread(consumer, "Consumer thread");
...

Finally we stop the consumer when we receive a RobotEvent.ENDED message.
...
switch (kcpMessage.getKindCase()){
case ROBOT_EVENT:
System. out.println("RobotEvent: " + kcpMessage.getRobotEvent().getType().name());
if (kcpMessage.getRobotEvent().getType() == Kcp.RobotEvent.Type. ENDED) {
stopConsumer();
}
break ;
...

Running the code from KCP Tutorial 2: Consume Specific Results starts a producer that creates a
consumer for your run. The consumer consumes all messages related to your run and closes down when
the robot stops executing.

KCP Tutorial 3: Stop Robot Execution
Stopping a robot is a little different compared to the JMS communication in Tutorial 1 and Tutorial 2,
because the StopRobot message is broadcasted to all RoboServers over a JMS Topic.

To connect to a topic is similar to connecting to a queue. The only difference is that we call the
session.createTopic(name) instead of session.createQueue() as in the following example.
public void run() {
try {
// Create a ConnectionFactory
ActiveMQConnectionFactory connectionFactory = new
 ActiveMQConnectionFactory(BROKER_URI);
// Create a Connection
Connection connection = connectionFactory.createConnection();
connection.start();
// Create a Session
Session session = connection.createSession(false , Session. AUTO_ACKNOWLEDGE);
// Create the destination
Destination destination = session.createTopic(TOPIC);
// Create a MessageProducer from the Session to the Topic or Queue
MessageProducer producer = session.createProducer(destination);
producer.setDeliveryMode(DeliveryMode. PERSISTENT);
// Create a messages
Kcp.Message kcpMessage = createStopRobotMessage();
...

The rest of the connection setup is the same as for execute message.

66

Kofax Kapow Developer's Guide

When building a Stop Message all we need is the executionId as follows.
private Kcp.Message createStopRobotMessage() {
Kcp.StopRobot stopRobot = Kcp.StopRobot.
 newBuilder().setExecutionId(executionId).build();
return Kcp.Message. newBuilder()
.setStopRobot(stopRobot)
.build();
}

When a RoboServer receives a Stop message, it stops the robot after the current step is executed and
sends back a RobotEvent over the Result queue.

67

	Table of Contents
	Preface
	Getting Help for Kofax Products

	Java Programmer's Guide
	Java Basics
	First Example
	Robot Input
	Attribute Types
	Execution Parameters
	Robot Libraries

	Java Advanced
	Load Distribution and Failover
	Two Client Rule

	Executor Logger
	Data Streaming
	SSL
	Parallel Execution
	Repository Integration

	Under the Hood
	RequestExecutor Features
	Web Applications

	API Debugging
	Repository API
	Dependencies
	Repository Client
	Deployment via Repository Client
	Repository Rest API

	.NET Programmer's Guide
	.Net Basics
	First Example
	Robot Input
	Attribute Types
	Execution Parameters
	Robot Libraries

	.NET Advanced
	Load Distribution
	Two Client Rule

	Data Streaming
	SSL
	Repository Integration
	Executor Logger

	Under the Hood
	Request Executor Features

	Repository API
	Repository Client
	Deployment via Repository Client
	Repository API as Rest

	Examples
	Configure the RoboServer
	Configure the API Client

	Kapow Control Protocol
	Build a JMS Client
	KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message
	KCP Tutorial 2: Consume Specific Results
	KCP Tutorial 3: Stop Robot Execution

