Kofax Kapow

Developer's Guide
Version: 10.0.0

Date: 2016-09-20

KOFAX:#

© 2007-2016 Kofax, Inc., 15211 Laguna Canyon Road, Irvine, California 92618, U.S.A. All rights reserved.
Use is subject to license terms.

Copyright (C) 2004- 2016 Kapow Technologies, Inc. All rights reserved. Use is subject to license terms.
Unauthorized duplication or distribution is strictly prohibited.

Third-party software is copyrighted and licensed from Kofax’s suppliers. For information on third-
party software included in this product, see docunent ati on/t hi rdparty. ht i located in your Kapow
installation folder.

This product is protected by U.S. Patent No. 6,370,277.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF KOFAX,
INC. USE, DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS
WRITTEN PERMISSION OF KOFAX, INC.

Kofax, the Kofax logo, and the Kofax product names stated herein are trademarks or registered
trademarks of Kofax, Inc. in the U.S. and other countries. All other trademarks are the trademarks or
registered trademarks of their respective owners.

U.S. Government Rights Commercial software. Government users are subject to the Kofax, Inc. standard
license agreement and applicable provisions of the FAR and its supplements.

You agree that you do not intend to and will not, directly or indirectly, export or transmit the Software or
related documentation and technical data to any country to which such export or transmission is restricted
by any applicable U.S. regulation or statute, without the prior written consent, if required, of the Bureau

of Export Administration of the U.S. Department of Commerce, or such other governmental entity as may
have jurisdiction over such export or transmission. You represent and warrant that you are not located in,
under the control of, or a national or resident of any such country.

DOCUMENTATION IS PROVIDED "AS 1S" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Table of Contents

[T E= AL o7 Y PPRRRRR 2
Introduction to Programming with RObOtS ... ———————— 5
Getting Help for Kofax ProdUCESooiiiiiiiii ettt et e e e nee e e e e nte e e e e snnee e e e eneees 5
Java Programmer's GUIAEccccciiiiiiccciismmerenisissssssssssssse s s sssssssssssssse s s sesssssssssssmssssssesssnssssssnsnssenssssssssssnnnnsnnnses 7
S N T = T TR 7
LT A = e= T] o[YO OO PSPPI 8

L] oo A 1] 11 | RS 10

F g1 U (ST Y/ o= TR PPROPRRPR 11
EXECULION PArametersooooiiiiiiiiiiii ettt e e e e e et et e e e e e e e e e b et e e e e e e e e e e e nnnrreeeeas 13

o] oTo] I o] = 4 T PP 14

B A= o V= g oo S 16
Load Distribution and FailOVEr ...t e e e e e e e e e e e e e e e e annnes 16

[G To1U | (o S 1o T [[T SRR 17
D= F= IS 1 (== o1 o T TR PP 18

01 | USSR 21
Parallel EXECULION ...ttt e et e e e sttt e e s ab e e e e e nbe e e e e snbbeeeeeanbeeeeeennreas 22
REPOSItOrY INtEGrationcoo ittt e e et e e e s bttt e e e abee e e e e anbeeeeeanee 23
100 To [T i =T oY Yo [P ERRPPPN 24
ReQUESIEXECULOr FEALUIESeeiiiiiiii ettt e e e e et e e et eternranan e ns 25
LAV = AN o 1 = o) SRR 25

N e I 1Y 010 o o T PR RT 26
=T 0T L] 1 (o] YA . USSR 27
1T 0 =T o 1= o][USSR 27

=T 1011 (o] A O 1Y o | SRR 27
Deployment via RepOSItOry CHENTuiiiiiiiie it e e e e e e e e e e e e s s e aaereeaaaeeeeannnne 29
REPOSIIONY RESE AP ..ottt e et e e e e bt e e e e e b bt e e e e abe e e e e e nbe e e e e anneeas 30
NET Programmer's GUIOEcc.ccccirrrresrrrissassreressssrersssssssessssssnesessssnsessssssssessssssnsesssssnnensssssnnessssssnsessssssnnenss 38
B LY G = T T o SRR 38
1] A =T] o] = P 39
o] o Lo T A 1] 11 | AP PP PRPPIR 40

N 1 o 1U] (=T 1Y/ o 1= TSP RREPR 41
EXECULION Parameters ...ttt e e e e e e et e e e e e e e e e e er e e e e e e e e e e nnneeenees 43

(o] oo gl I o] r= Ty = TR 45

Kofax Kapow Developer's Guide

B = B0 V7= T o7 =T [PPSO PUTPPP R OPPPPP 47
[0 T=To I 1= £y o U (o o SR 47
D= = IS 1 (== o1 Vo SRR 48
03 | USSP 52
REPOSItOrY INtEGration ...ttt e et e e e s ab e e e s abee e e e e anbeeeeeanee 53
[Yo U | (o] gl o T [[SRR 53

18 0 o [T | g T- T 0T Lo PP T OPP PP PP PPPPPPPI 54
Request EXECULOr FEATUIESooo it e e e e e e e e et ee e e e e e e e e e e nnnneees 55

=T 0T 1] 1 (o] YA . PP USTUPPSRRRR 55
[T 0T 171 (o] YA @2 1= o | SRR 55
Deployment via RepoSItory ClENT ... s 58
RePOSITOrY AP @S RESE ...ttt e e e e e e e s ettt e e e e e e e e e s nnberaeeeaaeeeeaanas 58

= 0] o] 1= SRS 59
Compiling & RUNNING the EXAMPIESviiiiiiiiiei ettt e e e ne e e s sneeeeeeaa 59
CH COMPIIEE ISSUES ..ottt e e e e e e et e e e e e e e e e e e ebabaaeeeeaeeeeeeeasbsreeeeaaaeeeaaasees 59
INET FrameEWOTK 4.0ooiiiiiiiiee ettt e e ettt e e e e s bttt e e e sttt e e e e nbe e e e e anbeeeeeanbeeeeeeaneeeeeeannees 59
3T I b o1 o) -SSR 59
Configure the RODOSEIVETooiiiiie et et e e e ettt e e e sttt e e e s snteeeeesantaeeessseeeaenanes 59
Configure the APL CIENTveeeiiee e r e e e e e e e e st e e e e aaeessaanaeraaeeeeaeeeeeannsnranes 59

Kapow Control ProtoCol i amme e s e e e s e mmnn e e e e e s 61

=T o = Y S T =Y o | SRR 62
KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Messageccccccceeeeeeiicvviienenennnn. 62
KCP Tutorial 2: Consume SpecCific RESUISooiiiiiiii e e 66
KCP Tutorial 3: Stop RODOt EXECULIONeviiiiiiiiiiiiieeeee ettt e e e e e e e e e enaes 67

Introduction to Programming with Robots

Robots are executed on RoboSer ver through an API (Java or .Net). You may use the API directly in your
own application or indirectly when you execute robots using the Management Console.

This part of the documentation will look at the direct execution of Robot using the Java and .Net APIs

= The Java Programmer's Guide describes the API that can be used in Java programs.
» The .NET Programmer's Guide describes the API to use in .NET applications, including C# programs.

API reference documentation is available for Java, .NET and can be found under the API folder in your
Kapow installation folder, for example C: \ Pr ogr am Fi | es\ Kapow 10. 0. O\ API .

Getting Help for Kofax Products

Kofax regularly updates the Kofax Support site with the latest information about Kofax products.

To access some resources, you must have a valid Support Agreement with an authorized Kofax Reseller/
Partner or with Kofax directly.

Use the tools that Kofax provides for researching and identifying issues. For example, use the Kofax
Support site to search for answers about messages, keywords, and product issues. To access the Kofax
Support page, go to www.kofax.com/support.

The Kofax Support page provides:
» Product information and release news
Click a product family, select a product, and select a version number.
= Downloadable product documentation
Click a product family, select a product, and click Documentation.
= Access to product knowledge bases
Click Knowledge Base.
= Access to the Kofax Customer Portal (for eligible customers)
Click Account Management and log in.

To optimize your use of the portal, go to the Kofax Customer Portal login page and click the link to
open the Guide to the Kofax Support Portal. This guide describes how to access the support site, what
to do before contacting the support team, how to open a new case or view an open case, and what
information to collect before opening a case.

= Access to support tools
Click Tools and select the tool to use.

= Information about the support commitment for Kofax products
Click Support Details and select Kofax Support Commitment.

http://www.kofax.com/support

Kofax Kapow Developer's Guide

Use these tools to find answers to questions that you have, to learn about new functionality, and to
research possible solutions to current issues.

Chapter 1

Java Programmer's Guide

This guide describes how to execute Robots using the Kapow Java API. The guide assumes that you
have completed the Design Studio tutorials and know how to write simple Robots and that you are familiar
with the Java programming language.

The programmer's guide has been completely rewritten for version 8.3, as large portions of the API has
been deprecated, and a new execution API has been created. The API is still backwards compatible, but
you should familiarize yourself with the new API and consider rewriting existing application to use the new
API, as the deprecated classes will be removed in future releases.

The old Robot Execut or has been deprecated because of the following reasons

» Robots would continue to execute on RoboSer ver even after an RQLExcept i on was thrown by the API.

» Robots would continue to execute even if RoboSer ver lost connection to the client, resulting in log
errors for every Return Value executed.

= The distribution policies didn't look at server capacity when distributing requests.

= It was cumbersome to implement object streaming, because there were many hidden pitfalls when
implementing a custom RQLHandI er

You can still find the old Java programmer's guide, at ht t p: / / hel p. kapowt ech. cont 8. 2/ t opi ¢/ doc/
javal/ Top. ht m

Note The pri nt St ackTr ace method is deprecated in Kapow version 9.6 and later.

Details about specific classes can be found in the JavaDoc.

Java Basics

Robots run by the Management Console are executed using the Java API. The Java API allows you to
send requests to a RoboSer ver that instructs it to execute a particular robot. This is a classic client-server
setup in which Management Console acts as the client and RoboSer ver as the server.

By using the API, any Java based application can become a client to RoboSer ver . In addition to running
robots that store data in a database, you can also have the robots return data directly back to the client
application. Here are some examples:

= Use multiple robots to do a federated search, which aggregates results from multiple sources in real
time.

* Run a robot in response to an event on your application back-end. For instance run a robot when a
new user signs up, to create accounts on web-based systems not integrated directly into your back-
end.

The basic section of this guide will introduce the core classes, and how to use them for executing robots.
We will also describe how to provide input to robots, and control their execution on RoboSer ver .

The Java APl is a jar file, and it is located in /API/robosuite-java-api/lib/robosuite-api.jar inside the Kapow
installation folder, see important folders for details. All examples in this guide can also be found in / API /
robosui t e-j ava- api / exanpl es. Located next to the Java API are 5 additional jar files which comprise
the external dependencies of the API. Most basic API tasks such as executing robots can be done without
using any of these 3rd party libraries, while some advanced features do require the usage of one or more
of these 3rd party libraries. The examples in this guide will specify when such libraries are required.

First Example

Let's start by looking at the code required to execute the robot named NewsMagazi ne. r obot , which is
located in the Tutorials folder of the default project. The robot outputs its results using the Return Value
step action, which makes it easy to handle the output programmatically using the API. Other robots
(typically those run in a schedule by the Management Console) store their data directly in a database
using the Store in Database step action, in which case data collected by the robot will not be returned to
the API client.

In the following, we will look at how to execute the NewsMagazi ne robot and process the output
programmatically.

Execute a Robot without input:

i mport com kapowt ech. robosui te. api . java. repository. construct. *;
i mport com kapowt ech. robosuite. api.java.rql.*;
i mport com kapowt ech. robosui te. api.java.rqgl.construct.*;

/**

* Exanpl e that shows you how to execute NewsMagazi ne.robot fromtutoriall
*/

public class Tutoriall {

public static void main(String[] args) throws O usterAl readyDefi nedException {

RoboServer server = new RoboServer ("l ocal host", 50000);
bool ean ssl = fal se;
Cluster cluster = new Cluster("M/Custer", new RoboServer[]{ server}, ssl);

Request . regi sterC uster(cluster); // you can only register a cluster once per
appl i cation

try {
Request request = new Request ("Li brary:/Tutorial s/ NewsMagazi ne. robot");
request . set Robot Li brary(new Def aul t Robot Li brary());
RQLResul t result = request.execute("M/d uster");

for (Qbject o : result. getQutput Cbject sByName("Post")) {
RQLObj ect val ue = (RQLObj ect) o;
String title = (String) value.get("title");
String preview = (String) val ue.get("preview');
Systemout.printin(title + ", " + preview;

}

Let's start by looking at the classes involved and their responsibilities.

Kofax Kapow Developer's Guide

RoboSer ver This is a simple value object that identifies a RoboSer ver which can execute
robots. Each RoboSer ver must be activated by a Management Console and
assigned KCU before use.

Cl uster A cluster is a group of RoboSer ver functioning as a single logical unit.

Request This class is used to construct the robot request. Before you can execute any
requests you must register a cluster with the Request class.

Def aul t Robot Li brary A robot library instructs RoboSer ver where to find the robot identified in the
request. Later examples will explore the various robot library types and when/how
to use them.

RQLResul t This contains the result of a robot execution. The result contains value responses,
log and server messages.

RQLObj ect Each value that is returned from a robot using the Return Value action can be
accessed as an RQLObj ect .

Now let's go through each line in the example an look at the specifics.

This tells the API that our RoboSer ver is running on localhost port 50000.
RoboServer server = new RoboServer ("l ocal host", 50000);

This defines a cluster with a single RoboSer ver . The cluster is registered with the Request class, allowing
you to execute request on this cluster. Each cluster can only be registered once.

Registering a cluster:

bool ean ssl = fal se;
Cluster cluster = new Cluster("MC uster", new RoboServer[]{ server}, ssl);
Request . regi sterCl uster(cluster);

This creates a request that will execute the robot named NewsMagazi ne. r obot located at

Li brary:/ Tutorial s. Li brary:/ refers to the robot Library configured for the request. Here the

Def aul t Robot Li br ary is used, which instructs RoboSer ver to look for the robot in the servers local file
system, see Robot Libraries for details on how to use robot libraries.

Request request = new Request ("Library:/Tutorial s/ NewsMagazi ne. robot");
request . set Robot Li br ary(new Def aul t Robot Li brary());

This executes the robot on the cluster named MyCl ust er (the cluster we previously registered) and
returns the result once the robot is done. By default execute will throw an exception if the robot generates
an API exception.

RQ.Result result = request.execute("M/d uster")

Here we process the extracted values. First we get all extracted values of the type named Post and
iterate through them. For each RQLODbj ect we access the attributes of the Post type and print the result.
We will look at attributes and mappings in a later section.

for (Qbject o : result.getQutput Cbject sByName("Post")) {
RQLObj ect val ue = (RQLObj ect) o;

String title = (String) value.get("title");

String preview = (String) val ue.get("preview');
Systemout.printin(title + ": " + preview;

Kofax Kapow Developer's Guide

Robot Input

Most robots executed through the API will be parameterized through input, such as a search keyword,
or login credentials. Input to a robot is part of the request to RoboSer ver and is provided using the
creat el nput Vari abl e method on the request. Let us look at a short code fragment.

Input using implicit RQLObjectBuilder:

Request request = new Request ("Library:/Input.robot");
request . creat el nput Vari abl e("userLogi n").setAttri bute("usernane", "scott")
.setAttribute("password", "tiger");

Here we create a Request and use cr eat el nput Vari abl e to create an input variable named user Logi n.
We then use set At t ri but e to configure the username and password attributes of the input variable.

The above example is a common shorthand notation, but can also be expressed move verbosely by using
the RQLObjectBuilder:

Input using explicit RQLObjectBuilder:

Request request = new Request ("Library:/Input.robot");

RQ.oj ect Bui | der userLogi n = request. createl nput Vari abl e("userLogi n");
user Logi n. set Attri bute("usernane", "scott");

userLogin. set Attri bute("password", "tiger");

The two examples are identical. The first utilizes the cascading method invocation on the anonymous
RQLObj ect Bui | der is therefore shorter.

When RoboSer ver receives this request the following occurs:

* RoboServers loads | nput . r obot (from whatever Robot Li br ary is configured for the request).

= RoboServer verifies that the robot has a variable named user Logi n and that this variable is marked as
input.

* RoboServer now verifies that the attributes we have configured using set At t ri but e are compatible
with the type of variable user Logi n. Which means that the type must have attributes named username
and password and that these must both be text based attributes (the next section will describe the
mapping between API and Design Studio attributes).

= If all input variables are compatible, RoboSer ver will start executing the robot.

If a robot requires multiple input variables, you must create all of them in order to execute the robot. You
only have to configure required attributes, any no-required attributes that you don't configure through the
API will just have a null value. If we assume you have a robot that requires login to both Facebook and
Twitter, you could define the input like this.

Request request = new Request ("Library:/Input.robot");

request. creat el nput Vari abl e("facebook").setAttribute("usernanme", "scott")
.setAttribute("password", "facebook123");
request.createl nputVariable("twitter").setAttribute("usernane", "scott")

.setAttribute("password", "twitter123");

Kofax Kapow Developer's Guide

Attribute Types

When you define a new type in Design Studio you select an attribute type for each attribute. Some of
these attributes can contain text, like Short text, Long Text, Password, HTML, XML, and when used inside
a robot there may be requirements to the text store in these attributes. If you store text in a XML attribute,
the text must be a valid XML document. This validation occurs when the type is used inside a robot, but
since the API doesn't know the anything about the type it doesn't validate attribute values in the same
manner. As a result the API only has 8 attribute types versus the 19 available in Design Studio This table
shows the mapping between the APl and Design Studio attribute types.

API to Design Studio mapping

API Attribute Type Design Studio Attribute Type

Text Short Text, Long Text, Password, HTML, XML, Properties, Language, Country,
Currency, Refind Key

Integer Integer

Boolean Boolean

Number Number

Character Character

Date Date

Session Session

Binary Binary, Image, PDF

The API attribute types are then mapped to Java in the following way.

Java Types for Attributes

API Attribute Type Java Class

Text java.lang. String

Integer java.l ang. Long

Boolean j ava. | ang. Bool ean

Number java. | ang. Doubl e

Character java. | ang. Char act er

Date java.util . Date

Session com kapowt ech. r obosui t e. api . construct. Sessi on
Binary com kapowt ech. robosui t e. api . construct. Bi nary

The RQ Obj ect Bui | der' s set Attri but e method is overloaded so you don't need to specify the attribute
type explicitly when configuring an attribute through the API, as long as the right java class is used as
argument. Here is an example that shows how to set the attributes for an object with all possible (Design

Studio) attribute types.

1

Recommended usage of set Attri but e:

Request request = new Request("Library:/All Types.robot");

RQ.Coj ect Bui | der i nput Bui | der = request.createl nputVariabl e("Al | Types");
i nput Bui | der.setAttribute("anlnt", new Long(42L));

nput Bui | der. set Attri bute("aNunber", new Doubl e(12. 34));

nput Bui | der. set Attri but e("aBool ean", Bool ean. TRUE) ;

nput Bui | der . set Attri bute("aCharacter", 'c');

nput Bui | der. set Attri bute("aShort Text", "some text");
nput Bui | der . set Attri bute("aLongText", "a |onger test");
nput Bui | der. set Attri bute("aPassword", "secret");

nput Bui | der. set Attri bute("aHTM.", "<htm >bl a</htm >");

nput Bui | der. set Attri bute("anXM.", "<tag>text</tag>");

nput Bui | der. set Attri bute("abDate", new Date());

nput Bui | der. set Attri bute("aBi nary", new Binary("sone bytes".getBytes()));
nput Bui | der . set Attri bute("aPDF", (Binary) null);

nput Bui | der. set Attri bute("anl mage", (Binary) null);

nput Bui | der. set Attri bute("aProperties", "nanme=val ue\ nnane2=val ue2");
nput Bui | der. set Attri bute("aSession", (Session) null);

nput Bui | der. set Attri bute("aCurrency", "USD');

nput Bui | der. set Attri bute("aCountry", "US");

nput Bui | der. set Attri but e("alLanguage”, "en");

nput Bui | der . set Attri but e("aRefi ndKey", "Never use this a input");

The above example explicitly uses new Long(42L), and new Double(12.34), although 42L and 12.34
would be sufficient due to auto boxing. Also notice that we have to cast null values, because the Java
compiler can't otherwise determine which of the overloaded set At t ri but e methods we want to call.
However since unconfigured attributes will automatically be null, you never need to set null explicitly.

It is possible to specify the Attribute and At t ri but eType explicitly when creating input using the API. This
is approach is not recommended, but may be needed in rare cases, and would look like this.

Incorrect usage of set Attri bute:

Request request = new Request("Library:/All Types.robot");
RQ.oj ect Bui | der i nputBui | der = request.createl nputVariabl e("All Types");
i nput Bui | der.setAttribute(new Attribute("anlnt", "42", AttributeType.|NTEGER));
nput Bui | der. set Attribute(new Attribute("aNunber", "12.34", AttributeType. NUMBER));
nput Bui | der . set Attri bute(new Attribute("aBool ean", "true", AttributeType. BOOLEAN));
nput Bui | der. set Attri bute(new Attribute("aCharacter", "c", AttributeType. CHARACTER));
nput Bui | der. setAttri bute(new Attribute("aShortText", "sonme text", AttributeType. TEXT));
nput Bui | der . set Attri bute(new Attribute("aLongText", "a |longer test", AttributeType. TEXT));
nput Bui | der. set Attribute(new Attribute("aPassword", "secret", AttributeType. TEXT));
nput Bui | der. set Attribute(new Attribute("aHTM.", "<htm >bla</htm >", AttributeType. TEXT));
nput Bui | der. set Attri bute(new Attribute("anXM.", "<tag>text</tag>", AttributeType. TEXT));
nput Bui | der. set Attri bute(new Attribute("abDate", "2012-01-15 23:59:59. 123",
Attri but eType. DATE)) ;
nput Bui | der . set Attri bute(new Attribute("aBi nary",
Base64Encoder . encode("sone bytes".getBytes()), AttributeType. Bl NARY));
nput Bui | der. setAttribute(new Attribute("aPDF", null, AttributeType. Bl NARY));
nput Bui | der . set Attri bute(new Attribute("anl nmage", null, AttributeType. Bl NARY));
nput Bui | der. set Attri bute(new Attribute("aProperties", "nane=val ue\ nnane2=val ue2",
Attri but eType. TEXT));
nput Bui | der . set Attri bute(new Attribute("aSession", null, AttributeType.SESSION));
nput Bui | der. set Attribute(new Attribute("aCurrency", "USD', AttributeType. TEXT));
nput Bui | der. set Attribute(new Attribute("aCountry", "US", AttributeType. TEXT));
nput Bui | der . set Attri bute(new Attribute("alLanguage", "en", AttributeType. TEXT));
nput Bui | der. set Attri bute(new Attribute("aRefindKey", "Never use this a input",
Attri but eType. TEXT));

As we can see all attribute values must be provided in the form of strings. The string values are then
converted to the appropriate Java objects based on the Attribute type provided. This is only useful if you
build other generic APIs on top of the Kapow Java API.

Kofax Kapow Developer's Guide

Execution Parameters

In addition to the cr eat el nput Var i abl e method, the Request contains a number of methods that

controls how the robot executes on RoboSer ver.

Execution Control Methods on Request

set MaxExecuti onTi me(i nt seconds)

Controls the execution time of the robot. When this time
has elapsed the robot will be stopped by RoboSer ver .
The timer doesn't start until the robot begins to execute,
so if the robot is queued on RoboSer ver this is not
taken into account.

set St opOnConnect i onLost (bool ean)

When true (default) the robot will stop if RoboSer ver
discovers that the connection to the client application
has been lost. You should have a very good reason for
setting this value to false - if your code is not written

to handle this, your application will not perform as
expected.

set St opRobot OnApi Except i on(bool ean)

When true (default) the robot will be stopped by
RoboSer ver after the first API exception is raised. By
default most steps in a Robot will raise an API exception
if the step fails to execute - this is configured on the
steps error handling tab.

When set to false, the robot will continue to execute
regardless of API exceptions, however unless your
application is using the Request Execut or streaming
execution mode, an exception will still be thrown by
execute(), so be extremely careful when setting this to
false.

set Usernane(String), setPassword(String)

Sets the RoboSer ver credentials. RoboSer ver can
be configured to require authentication. When this
option is enabled, the client must provide credentials or
RoboSer ver will reject the request.

set Robot Li brar y(Robot Li brary)

A robot library instructs RoboSer ver where to find

the robot identified in the request. Later examples will
explore the various robot library types and when/how to
use them.

set Executionl d(String)

Allows you to set the execut i onl d for this request. If
you don't provide one, RoboSer ver will generate one
automatically. The execution ID is used for logging and
also needed if your client needs to be able to stop the
robot programmatically. The ID must be globally unique
(over time). If two robots use the same execution ID, the
logs will be inconsistent.

13

Kofax Kapow Developer's Guide

set Proj ect (String) This is used solely for logging purposes. The
Management Console uses this field to link log
messaged to project, so the log views can filter by
project.

If your application is not using the

Reposi t or yRobot Li br ary you should probably set
this value to inform the RoboSer ver logging system
which project (if any) this robot belongs to.

Robot Libraries

In Design Studio robots are grouped into projects. If you look in the file system you will see that these
projects are identified by a folder named Library, see Libraries and Projects for details.

When you build the execute request for RoboSer ver , you identify the robot by a robot URL, like this:
Request request = new Request ("Library:/Input.robot");

Here, Library:/ is a symbolic reference to a robot library, in which the RoboSer ver should look for the
robot. The Robot Li br ary is then specified on the builder like this:

request . set Robot Li brary(new Def aul t Robot Li brary());
There are three different robot library implementations, which one to select depends on you deployment

environment.

Robot Libraries

Library Type Description

Def aul t Robot Li brary This configures RoboSer ver to look for the robot in the
current project folder. This folder is defined in the Settings
application.

If you have multiple RoboSer ver s you will have to deploy
your robots on all RoboSer ver s.

This robot library is not cached, so the robot is reloaded from
disk with every execution. This makes the library usable in a
development environment where robots change often, but not
suitable for a production environment.

Kofax Kapow Developer's Guide

Library Type

Description

EnbeddedFi | eBasedRobot Li brary

This library is embedded in the execute request sent to
RoboSer ver . To create this library you must create a zip file
containing the robots and all its dependencies (types, snippets
and resources). This can be done the Tool s- >Creat e
Robot Li brary Fil e menuin Design Studio.

The library is sent with every request, which adds some
overhead for large libraries, but the libraries are cached on
RoboSer ver, which offers best possible performance.

One strength is that robots and code can be deployed as a
single unit, which offers clean migration from QA environment
to production environment. However, if the robots change
often you will have to redeploy them often.

You can use the following code to configure the embedded
robot library for your request.

Request request = new

Request ("Library:/Tutorial s/
NewsMagazi ne. robot ") ;

Robot Li brary library =
new EnbeddedFi | eBasedRobot Li brary
(new Fi | el nput St ream
("c:\\enbeddedLi brary. robotlib"));

request . set Robot Li brary(library);

15

Kofax Kapow Developer's Guide

Library Type Description
Reposi t or yRobot Li brary This is the most flexible Robot Li brary.

This library uses the Management Console's built-in repository
as a robot library. When you use this library, RoboSer ver

will contact the Management Console which will send a robot
library containing the robot and its dependencies.

Caching occurs on a per robot basis, inside both Management
Console and RoboSer ver . Inside Management Console,

the generated library is cached based on the robot and its
dependencies. On RoboSer ver, the cache is based on a
timeout, so it doesn't have to ask the Management Console
for each request. In addition, the library loading between
RoboSer ver and Management Console uses HTTP public/
private caching, to further reduce bandwidth.

If NewsMagazi ne. r obot has been uploaded to the
Management Console we could use the repository robot
library like this when executing the robot:

Request request = new

Request ("Li brary:/ Tutori al s/ NewsMagazi ne. robot");

Robot Li brary library = new

Reposi t oryRobot Li brary("http://1 ocal host: 50080",
"Default Project",

60000) ;

request . set Robot Li brary(li brary);

This will instruct RoboSer ver to load the robot from a local
Management Console and cache it for one minute before
checking with the Management Console to see if a new
version of the robot (it's type and snippets) has been changed.
In addition any resource loaded through the Li brary:/

protocol, will cause RoboSer ver request the resource directly
from the Management Console.

Java Advanced

In this section we will look a little closer at some of the more advanced features on the API. These include
output streaming, logging and SSL configuration, as well as parallel execution.

Load Distribution and Failover

Let's look a little closer at what happens inside the Request Execut or . The executor is given an array of
RoboSer ver s. As the executor is constructed it tries to connect to each RoboServer. Once it is connected
it sends a ping request to each RoboSer ver to discover how the server is configured.

Load balanced executor:

RoboServer prod = new RoboServer ("prod. kapow. | ocal ", 50000);
RoboServer prod2 = new RoboServer ("prod2. kapow. | ocal ", 50000);
Cluster cluster = new Cluster("Prod", new RoboServer[]{ prod, prod2}, false);

16

Kofax Kapow Developer's Guide

Request . regi sterd uster(cluster);

Let's look a little closer at what happens inside the Request Execut or . The executor is given an array of
RoboSer ver s. As the executor is constructed it tries to connect to each RoboSer ver . Once it is connected
it sends a ping request to each RoboSer ver to discover how the server is configured.

Load is distributed to each online RoboSer ver in the cluster, based on the number of unused execution
slots on the RoboSer ver . The next request is always distributed to the RoboSer ver with the most
available slots. The number of available execution slots is obtained through the initial Ping response, and
the executor keeps track of each robot it starts and when it completes. The number of execution slots on
a RoboSer ver is determined by the max concurrent robots on the Servers tab.

If a RoboSer ver goes offline it will not receive any robot execution requests before it has successfully
responded to the ping request.

Two Client Rule

You should only have one API client using a given cluster of RoboSer ver . If you have multiple JVMs
running robots against the same RoboSer ver s, this will result in reduced performance.

Executor Logger

When you execute a request, the execute method will throw an exception if a robot generates an error.
Other types of errors and warnings are reported through the Execut or Logger interface. In the previous
examples, we have not provided any Execut i onLogger when executing robots, which means we get the
default implementation that will write to system out. Let's see how the Execut or Logger will report if one of
our RoboSer ver s goes offline.

The example configures a cluster with a RoboSer ver which is not online.

ExecutorLogger, offline server example:

RoboServer rs = new RoboServer ("l ocal host", 50000);
Cluster cluster = new Cluster("nanme", new RoboServer[]{rs}, false);
Request . regi sterCl uster(cluster);

If you run this example if should print the following to the console.

ExecutorLogger, offline RoboServer console output:

RoboSer ver{host =' | ocal host', port=50000} went offli ne.
Connecti on refused

Often you don't want to have your application writing directly to System.out, in that case you can provide a
different ExecutorLogger implementation, you can do so when registering the cluster.

Use DebugExecutorLogger:

Request . regi sterCl uster (cluster, new DebugExecut or Logger());

This example uses the DebugExecut or Logger () which will also print to Syst em out , but only if the API
debugging is enabled. Alternative you can provide your own implementation of the Execut or Logger,

to control how error messages should be handled. Check the Execut or Logger JavaDoc for additional
details.

Data Streaming

Sometimes you need to present the results from a robot execution in real-time. In these cases you want
the API to return the extracted values immediately instead of waiting for the robot to finish its execution
and access the RQLResul t .

The API offers the possibility to receive a callback every time the API receives a value that was returned
by the Robot. This is done through the Robot ResponseHandl er interface

Response streaming using AbstractFailFastRobotResponseHandler:

public class DataStreamnm ng {
public static void main(String[] args) throws O usterAl readyDefi nedException {

RoboServer server = new RoboServer ("l ocal host", 50000);
Cluster cluster = new Cluster("M/C uster", new RoboServer[] {server}, false);
Request . regi sterCl uster(cluster);

try {
Request request = new Request ("Li brary:/Tutorial s/ NewsMagazi ne. robot");

Robot ResponseHandl er handl er = new Abstract Fai | Fast Robot ResponseHandl er () {
public voi d handl eRet ur nedVal ue(Robot Qut put Obj ect Response response, Stoppabl e
st oppabl e) throws RQLException {
RQ.oj ect val ue = response. get Qut put Qoj ect () ;
Long personld = (Long) val ue. get("personld");
String name = (String) val ue.get("nane");
Long age = (Long) val ue. get("age");
Systemout.println(personld + ", " + nanme + ", " + age);

}

reque’st .execute("Myd uster", handler);

}

The above example uses the second execute method of the Request, which expects a

Robot ResponseHand! er in addition to the name of the cluster to execute the robot on. In this example
we create a Robot ResponseHand| er by extending Abst r act Fai | Fast Robot ResponseHand| er, which
provides default error handling, so we only need to handle the values returned by the robot.

The handl eRet ur nedVval ue method is called whenever the API receives a returned value from

RoboSer ver . The Abst r act Fai | Fast Robot ResponseHandl er used in this example, will throw exceptions
in the same way as the non-streaming execute method. This means that an exception will be thrown in
response to any API exceptions generated by the robot.

The Robot ResponseHandl! er has several methods which can be grouped into 3 categories.

Robot life cycle events

Methods which are called when the robot's execution state change on RoboSer ver, such as when it starts
and finishes its execution.

Robot data events
Methods which are called when the robot returns data or errors to the API.

Kofax Kapow Developer's Guide

Additional error handling

Methods which are called either due to an error inside RoboSer ver or in the API.

Robot ResponseHandl! er - robot life cycle events

Method name

Description

voi d request Sent (RoboServer roboServer,

Execut eRequest request)

Called when the Request Execut or has found the
server which will execute the request.

voi d request Accepted(String executionld)

Called when the found RoboSer ver has accepted the
request and put it into it queue.

voi d robot St art ed(St oppabl e st oppabl e)

Called when the RoboSer ver begins to execute the
robot. This usually occurs immediately after the robot
has been queued, unless the RoboSer ver is under

heavy load, or used by multiple API clients.

voi d robot Done(Robot DoneEvent reason)

Called when the robot is done executing on

RoboSer ver . The Robot DoneEvent is used to specify
if the execution terminated normally, due to an error, or if
it was stopped.

Robot ResponseHandl| er - robot data events

Method name

Description

voi d
handl eRet ur nedVal ue(Robot Qut put Gbj ect Respon
response, Stoppabl e stoppable)

Called when the robot has executed a Return Value
setion and the value has been returned via the socket to
the API.

voi d handl eRobot Error (Robot Er r or Response
response, Stoppabl e stoppable)

Called when the robot raises an API exception.

Under normal circumstances the robot will stop
executing after the first APl exception. This

behavior can be overri dden by using

Request . set St opRobot OnApi Excepti on(f al se),
in which case this method will be called multiple times.
This is useful if you want a data streaming robot to
continue to execute regardless of any generated errors.

voi d handl eWitelLog(Robot MessageResponse
response, Stoppabl e stoppabl e)

Called when the RoboSer ver begins to execute the
robot. This usually occurs immediately after the robot
has been queued, unless the RoboSer ver is under

heavy load, or used by multiple API clients.

Robot ResponseHand! er - additional error handling

Method name

Description

voi d handl eServer Error (ServerError RResponse
response, Stoppabl e stoppabl e)

Called if RoboSer ver generates an error, for instance
if the server is too busy to process any requests, or if an
error occurs inside RoboSer ver which prevents it from
starting the robot.

19

Method name Description

handl eError (RQLException e, Stoppable Called if an error occurs inside the API. Most commonly
st oppabl e) if the client loses the connection to RoboSer ver .

Many of the methods will include a Stoppable object, this object can be used to stop for instance in
response to a specific error or value returned.

Some of these methods allow you to throw an RQLExcept i on, if you do this you should be aware of

the consequences. The thread that calls the handler is the thread the calls Request . execut e(), this
means that any exceptions thrown will bubble up the call stack and out the execute method. If you throw
an exception in response to handl eRet ur nedVal ue, handl eRobot Err or or handl eWi t eLog it is your
responsibility to invoke St oppabl e. st op(), or the robot may continue to execute even though the call to
Request . execut e() has completed.

Data streaming is most often used in one of the following use cases.

= Ajax based web application, where results are presented to the user in real-time. If data was not
streamed results could not be shown until the robot was done running.

= Robots that return so much data that the client would not be able to hold it all in memory throughout the
robots execution.

= Processes that need to be optimized so the extracted values are processed in parallel with the robot
execution.

= Processes that store data in databases in a custom format.
* Robots that should ignore or require custom handling of APl exceptions (see below).

Response and error collecting using AbstractFailFastRobotResponseHandler:

public class Dat aStream ngCol | ect Error sAndVal ues {
public static void main(String[] args) throws Cl usterAl readyDefi nedException {

RoboServer server = new RoboServer ("l ocal host", 50000);
Cluster cluster = new Cluster("M/Custer", new RoboServer[] {server}, false);
Request . regi sterC uster(cluster);

try {
Request request = new Request ("Li brary:/Tutorial s/ NewsMagazi ne. robot");

request . set St opRobot OnApi Excepti on(fal se); // | MPORTANT! !
request . set Robot Li br ary(new Def aul t Robot Li brary());
Er ror Col | ecti ngRobot ResponseHandl er handl er =
new Error Col | ecti ngRobot ResponseHandl er () ;
request. execute("M/Cluster", handler);

Systemout.println("Extracted val ues:");

for (Robot Qut put Obj ect Response response : handl er.getQutput ()) {
RQ.oj ect val ue = response. get Qut put Qoj ect () ;
Long personld = (Long) val ue. get("personld");
String name = (String) val ue.get("nane");
Long age = (Long) val ue. get("age");
Systemout.println(personld + ", " + nanme + ", " + age);

}

Systemout.printin("Errors:");
for (RobotErrorResponse error : handler.getErrors()) {
Systemout.println(error.getErrorLocati onCode() + ", " +
error.get Error Message());

private static class ErrorColl ecti ngRobot ResponseHandl er ext ends
Abst ract Fai | Fast Robot ResponseHandl er {

private List<RobotErrorResponse> _errors =
new Li nkedLi st <Robot Err or Response>() ;
private List<Robot Qut put Obj ect Response> _out put =
new Li nkedLi st <Robot Qut put Obj ect Response>() ;
publ i c voi d handl eRet ur nedVal ue
(Robot Qut put Obj ect Response response, Stoppabl e stoppabl e)
throws RQLException {
_out put. add(response) ;

@verride
public voi d handl eRobot Err or (Robot Er r or Response response,
St oppabl e st oppabl e) throws RQLException {
/! do not call super as this will stop the robot
_errors. add(response);

}

public List<Robot Error Response> getErrors() {
return _errors;
}

publ i ¢ Li st <Robot Qut put Cbj ect Response> get Qut put () {
return _out put;

}
}

The example above shows how to use a Robot ResponseHandl er that collects returned values and errors.
This type of handler is useful if the robot should continue to execute even when error are encountered,
this can be useful if the website is unstable and occasionally times out. Notice that only robot errors (API
exceptions) are collected by the handler, if the connection to RoboSer ver is lost Request . execut e() will
still throw an RQLExcept i on (and the robot will be stopped by RoboSer ver).

For more details check the Robot ResponseHand! er JavaDoc.

SSL

The API communicates with RoboSer ver through an RQLSer vi ce. The RQLSer vi ce is a RoboSer ver
component which listens for API requests on a specific network port. When you start a RoboSer ver you
specify if the RoboSer ver should use the encrypted SSL service, or the plain socket service, or both
(using two different ports). All RoboSer ver s in a cluster must be running the same RQ.Ser vi ce (although
the port may be different).

Assuming we have started a RoboSer ver with the SSL RQLSer vi ce on port 50043, like this:
RoboServer -service ssl: 50043
we can use the following code.

SSL configuration

RoboServer server = new RoboServer ("l ocal host", 50043);

bool ean ssl = true;

Cluster cluster = new Cluster("M/C uster", new RoboServer[] {server}, ssl);
Request . regi sterCl uster(cluster);

All we need to do is to create the cluster as an SSL cluster and specify the SSL port used by each
RoboServer. Now all communication between RoboSer ver and the API will be encrypted.

For this example to work you need commons- ssl - 0. 3. 8. j ar in you application cl asspat h, you can find it
next to the API jar file inside your Kapow installation.

In addition to data encryption, SSL offers the possibility to verify the identity the remote party. This type of
verification is very important on the Internet, as rouge Web sites could otherwise pretend to be someone

they are not. Most often your API client and RoboSer ver s will be on the same local network, so you rarely
need to verify the identity of the other party, but the API supports this feature should it become necessary.

Because identity verification is almost never used we will not describe it in this guide. If you are
interested, you should look at the SSL examples that are included with the Java API.

Parallel Execution

Both execute methods of the Request are blocking, which means that a thread is required for each robot
execution. The examples we have looked at until now have all executed the robot directly on the main

thread, which is typically not preferable as you can only execute a single robot at a time in a sequential
manner.

Let's look at an example that will execute two tutorial robots in parallel. This example uses the
java.util.concurrent library for multithreading.

Multithreading Example

i mport com kapowt ech. robosui te. api . j ava. repository. construct. *;
i mport com kapowt ech. robosuite. api.java.rql.*;

i mport com kapowt ech. robosui te. api.java.rqgl.construct.*;

i nport com kapowt ech. robosui te. api . j ava. rgl . engi ne. hot st andby. *;

import java.util.concurrent.*;
public class Parall el Execution {
public static void main(String[] args) throws Exception {
RoboServer server = new RoboServer ("l ocal host", 50000);
Cluster cluster = new Cluster("M/C uster", new RoboServer[] {server},
Rfegluzgz regi sterC uster(cluster);

int nunmRobots = 4;
int nunrhreads = 2;

Thr eadPool Execut or threadPool = new ThreadPool Execut or (nunirhr eads,
nunmrhr eads, 10, Ti neUnit.SECONDS, new Li nkedBl ocki ngQueue());
for (int i =0; i < nunRobots; i++) {

Request request = new Request ("Library:/Tutorial s/ NewsMagazi ne. robot");
request . set Robot Li br ary(new Def aul t Robot Li brary());
t hr eadPool . execut e(new Robot Runnabl e(request));

t hr eadPool . shut down() ;
t hr eadPool . awai t Ter mi nati on(60, Ti meUnit. SECONDS) ;

L e R T
/'l I nner classes

A R
static class Robot Runnabl e inpl ements Runnabl e {

Request _request;

Robot Runnabl e(Request request) {
_request = request;

public void run() {

try {
RQ.Result result = _request.execute("Mduster");

Systemout.printin(result);

}

The above example creates a Thr eadPool Execut or with two threads, we then creates four

Robot Runnabl es and execute them on the thread pool. Since the thread pool has two threads, two
robots will start to execute immediately, the remaining two will be parked in the Li nkedBl ocki ngQueue
and executed in order as the two first robot finish their execution and the thread pool threads become
available.

Please note that the Request is mutable, to avoid raise conditions the Request is cloned inside the
execute method. Because Request is mutable you should never modify the same Request on separate
threads.

Repository Integration

In the Management Console you also specify cluster of RoboSer ver s, these are used to execute
scheduled robots, as well as robots executed as REST services. The API allowed you to use
the Reposi t oryC i ent to obtain cluster information from Management Console, check the
Reposi t oryd i ent documentation for details.

Repository Integration:

public class Repositorylntegration {
public static void main(String[] args) throws Exception {

Repositorydient client = RepositorydientFactory.createRepositoryCient
("http://1ocal host:50080", null, null);
Request .regi sterCluster(client, "Cluster 1");

Request request = new Request ("Library:/Tutorial s/ NewsMagazi ne. robot");
request . set Robot Li br ary(new Def aul t Robot Li brary());

RQ.Result result = request.execute("M/duster");
Systemout.printin(result);

}
}

The above example shows how to create a Reposi t oryd i ent which connects to a Management
Console deployed on localhost. For this example to work, you must have commons-
logging-1.1.1.jar,commons-codec-1.4.jar,commons-httpclient-4.1.jar included in your classpath.

Authentication is not enabled so null is passed as both username and password. When we register the

Reposi toryd i ent we specify the name of a cluster which exists on the Management Console, this will
then query the Management Console to get a list of RoboSer ver s configured for this cluster, and check
every 2 minutes to see if the cluster configuration has been updated on the Management Console.

This integration allows you to create a cluster on Management Console that you can change dynamically
using the Management Console user interface. When you use a Management Console cluster with the

API usage should be exclusive, and you should not use it for scheduling robot, as this would break the
two client rule.

Under the Hood

The section will explain what is going on under the hood when you register a cluster and execute a
Requests.

When you register a Cluster with the Request, a Request Execut or is created behind the scene. This
Request Execut or is stored in a Map using the cluster name as key. When a request is executed the
provided cluster name is used to find the associated Request Execut or and execute the request.

Let's look at a short example.

Normal execution

public static void main(String[] args) throws |nterruptedException,
RQ_Exception {

RoboServer server = new RoboServer ("l ocal host", 50000);

Cluster cluster = new Custer("M/Custer", new RoboServer[]{ server}, false);
Request . regi sterd uster(cluster);

Request request = new Request ("Li brary:/Tutorial s/ NewsMagazi ne. robot");
request . set Robot Li brary(new Def aul t Robot Li brary());

RQLResul t result = request.execute("Md uster");

System out. println(result);

Now let's write the same example by using the hi ddenRequest Execut or directly

Under the hood execution :

public static void main(String[] args) throws |nterruptedException,
RQ_Exception {

RoboServer server = new RoboServer ("l ocal host", 50000);
Cluster cluster = new Custer("M/Custer", new RoboServer[]{ server}, false);
Request Execut or execut or = new Request Execut or (cl uster);

Request request = new Request ("Li brary:/Tutorial s/ NewsMagazi ne. robot");
request . set Robot Li brary(new Def aul t Robot Li brary());

RQ.Result result = executor.execute(request);
Systemout.println(result);

}

The reason the Request Execut or is hidden by default, is so you don't have to keep track of it. You may
only create one Request Execut or per cluster, so if you use it directly you need to store a reference to it
throughout your application. Using Request . regi st er d ust er (cl ust er) means that you can blissfully
ignore the Request Execut or and lifecycle rules.

The Request Execut or contains the necessary state and logic which provides the load balancing and
failover features. Using the Request Execut or directly also offers a few extra features, which we will look
at.

Kofax Kapow Developer's Guide

RequestExecutor Features

When the Request Execut or is not connected to a repository, you can dynamically add remove
RoboSer ver s, by calling addRoboSer ver (..) and r enoveRoboSer ver (. .). These methods modifies the
distribution list used inside the Request Execut or .

Request Execut or . get Tot al Avai | abl eS| ot s() returns the number of unused execution slots across all
RoboSer ver s in the internal distribution list.

By using these methods you can dynamically add RoboSer ver s to your Request Execut or once the
number of available execution slots becomes low.

When you create the Request Execut or you may optionally provide an RQLEngi neFact ory. The
RQLEngi neFact ory allows you to customize which RQLPr ot ocol is used when connecting to a
RoboSer ver . This is only needed under very rare circumstances, for instance if you want use a client
certificate to increase security, check API Client Certificates for details.

Web Applications

The Request Execut or contains a number of internal threads used for sending and receiving requests
to RoboSer ver s, as well as pinging each known RoboSer ver at regular intervals. These threads are all
marked as daemon, which means that they don't prevent the JVM from stopping when the main thread
exists, check Thread JavaDoc for details on daemon threads.

If you use the Request Execut or inside a web application, the JVM has a longer lifespan than your web
application, and you can deploy and un-deploy your web application while the web container is running.
This means that a web application is responsible for stopping any threads that it has created, if it does
not a memory leak will be created when you un-deploy the web application. The memory leak occurs
because any objects referenced by running threads can't be garbage collected until the threads stop, so if
these threads are not stopped when the application is un-deployed, they will never be garbage collected.

If you use the Request Execut or inside a web application your code is responsible for shutting down
these internal threads, this is done by calling Request . shut down() or Request Execut or . shut down() if
your code created the Request Execut or explicitly.

This example show you how to use a Ser vl et Cont ext Li st ener to shutdown the API correctly when a
web application is un-deployed. You must define the context listener in your applications web.xml.

proper shutdown in web application:

i mport com kapowt ech. robosui te. api . j ava. repository. construct. *;
i mport com kapowt ech. robosuite. api.java.rql.*;
i mport com kapowt ech. robosui te. api.java.rql.construct.*;

import javax.servlet.*;

public cl ass API Shut downLi stener inplenents Servl et Cont ext Li stener {
public void contextlnitialized(ServletContextEvent servletContextEvent) {
RoboServer server = new RoboServer ("l ocal host", 50000);
Cluster cluster = new Cluster("M/C uster", new RoboServer[]{ server},
fal se);
try {
Request . regi sterCl uster(cluster);

}
catch (d usterAlreadyDefi nedException e) {

25

t hrow new Runti neException(e);

}

publ i c void cont ext Destroyed(Servl et Cont ext Event servl et Cont ext Event) {
Request . shut down() ;
}

cont ext Dest r oyed is called when the web container un-deploys the application. Here we call
Request.shutdown() to ensure that all internal threads in the hidden Request Execut or are stopped
correctly.

Since contextlnitialized can't throw any unchecked exceptions we have to wrap the

Cl ust er Al r eadyDef i nedExcept i on in a RunTi neExcept i on. Developers may be tempted to ignore the
Cl ust er Al r eadyDef i nedExcept i on at this location, because they claim that it can't be thrown, as our
application has not defined any other clusters. However due to the class loader hierarchy in java web
containers it is actually possible to get this exception if the application is deployed twice. It will however
only occur if the API jar file was loaded by a common class loader and not by the individual application's
class loader.

API Debugging

Although this is rarely needed, the API can provide additional information for debugging purposes. To
enable API debugging you need to configure the system property DEBUG_ON. The value of this property
must be a package/class name the API.

For instance, if you are interested in the data transmissions between the APl and RoboSer ver, you could
ask for debugging information for package com kapowt ech. r obosui t e. api . j ava. rql . i 0. While you are
developing you can do this by directly setting the system property in code, like this:

Enabling Debug:

System set Property("DEBUG ON', "com kapowt ech. robosuite.api.java.rqgl.io");
RoboServer server = new RoboServer ("l ocal host", 50000);

Cluster cluster = new Custer("M/Custer", new RoboServer[]{ server}, false);
Request . regi sterd uster(cluster);

If you are debugging an application in production, you would define the system property via the command
line, like this.

Enabling Debug:

j ava - DDEBUG ON=com kapowt ech. r obosui te. api .java.rqgl.io Tutorial 1

If you are interested in debug from multiple packages, you separate the package names by , (comma).
Instead of a package name, you can provide the argument ALL, to have debug from all packages printed.

Kofax Kapow Developer's Guide

Repository API

The Repository API allows you to query the Management Console's Repository, to get a list of projects,
robots and the input required to call a robot. It also allows you to programmatically deploy robots, types
and resource files.

Dependencies

To use the Repository API you need the following libraries, all libraries can be found in the API/robosuite-
java-api/lib folder inside you Kapow installation folder

commons-codec-1.4.jar

commons-httpclient-4.1 jar, or newer

commons-logging-1.1.1.jar

commons-ssl-0.3.8.jar or newer: if your Management Console must be accessed through HTTPS
dom4j-1.6.1.jar

xstream-1.4.7 jar

Use Java 8 or later.

Repository Client

Communication with the repository is achieved through the Reposi t oryCl i ent found in the
com kapowt ech. robosui te. api . java. repository. engi ne

Create RepositoryClient :

}

public static void main(String[] args) {

String usernane = "admin";
String password = "admi n";
try {

Repositorydient client = RepositorydientFactory.
creat eRepositorydient("http://Iocal host:50080/",
user nane, password);

Project[] projects = client.getProjects();

for (Project project : projects) {

System out. printl n(project.getNane());

Here we see a Reposi t oryd i ent configured to connect to Management Console's repository on
http://1 ocal host: 50080/ , with a username and password.

Once the Reposi t oryd i ent is created, we use the get Proj ect s() method to query the
repository for a list of projects. Notice that when calling any of the Reposi t oryd i ent methods, a
Reposi t oryC i ent Except i on will be thrown if an error occurs.

The Reposi t oryd i ent has the following eleven methods.

Methods of the RepositoryClient:

27

Kofax Kapow Developer's Guide

Method signature

Description

voi d del et eResource(String projectNane,
String resourceNane, bool ean silent)

Deletes a resource from a project. If silent is true no
error is generated if the resource doesn't exist. The
r esour ceNane argument uses the full path of the
resource.

voi d del et eRobot (String project Nane,
String robot Name, bool ean silent)

Deletes a robot from a project. The r obot Nane
argument uses the full path of the robot.

voi d del et eSni ppet (String project Nane,
String sni ppet Nane, bool ean silent)

Deletes a snippet from a project. The sni ppet Nanme
argument uses the full path of the snippet.

voi d del eteType(String projectNane, String
nmodel Name, bool ean sil ent)

Deletes a type from a project. The nodel Name argument
uses the full path of the type.

voi d depl oyLi brary(String projectNaneg,
EnbeddedFi | eBasedRobot Li brary library,
bool ean faillfExists)

Deploys a library to the server. Robots, types and
resources will be overridden unless fai | | f Exi sts is
true.

voi d depl oyResource(String projectName,
String resourceNane, byte[] resourceBytes,
bool ean faillfExists)

Deploys a resource to a project. If a resource with the
given name already exist it can be overridden by setting
faillfExists tofalse. The r esour ceNane argument
uses the full path of the resource.

voi d depl oyRobot (String project Nane,
String robot Nane, byte[] robotBytes,
bool ean faillfExists)

Deploys a robot to a project. If a robot with the given
name already exist it can be overridden by setting
faillfExists tofalse. The r obot Nane argument
uses the full path of the robot.

voi d depl oySni ppet (String project Nane,
String snippet Nane, byte[] snippetBytes,
bool ean faillfExists)

Deploys a snippet to a project. If a snippet with the
given name already exist it can be overridden by setting
faillfExists tofalse. The sni ppet Nane argument
uses the full path of the snippet.

voi d depl oyType(String projectNane, String
typeNanme, byte[] typeBytes, bool ean
faillfExists)

Deploys a type to a project. If a type with the given
name already exist it can be overridden by setting
faillfExists tofalse. The t ypeNane argument uses
the full path of the type.

Project[] getProjects()

Returns the projects that exist in this repository

Cluster[] getRoboServerd usters()

Returns a list of clusters and online(valid) RoboServers
that are registered with the Management Console
running the repository.

Cluster[] get RoboServerd usters(bool ean
onl i neRoboSer ver)

Returns a list of clusters and Roboservers that are
registered with the Management Console. Use
onlineRoboServer flag to indicate if the clusters should
include only the online or all of the RoboServers.

Cl ust er addRoboServer (String cl usterNane,
int portNunber, String host)

Adds a new RoboServer to a cluster.

Robot [] get Robot sl nProject (String
pr oj ect Nane)

Returns the full path of the robots available in the project.

Robot Si gnat ur e get Robot Si gnature(String
proj ect Name, String robot Nane)

Returns the robot signature with the full path of the robot,
as well as the input variables required to execute this
robot and a list of the types it may return or store.

Reposi t or yFol der
get Proj ectl nventory(String projectNane)

Returns the entire tree of folders and files from the
repository.

Reposi t oryFol der get Fol derlnventory(String
project Nane, String fol derPath)

Returns the folders and files of the sub folder in the
specified project from the repository.

28

Kofax Kapow Developer's Guide

Method signature

Description

Reposi toryFol der getFilelnventory(String
project Nane, String folderPath, String
fileName, RepositoryFile.Type fileType)

Gets the file and the referenced files from the
management console. Remark, the file inventory is
wrapped in a RepositoryFolder, to get references.

voi d del eteFil e(RepositoryFile file, bool

sil ent)

Deletes the specified file from the repository.

Dat e get CurrentDat e()

Returns current date and time of the Management
Console.

byte[] getBytes(RepositoryFile file)

Returns the size in bytes of the specified file in the
repository.

String conput eChecksun(byte[] bytes)

Returns the checksum of the specified file to verify data
integrity.

voi d updat eFil e(RepositoryFile file,
byte[] bytes)

Updates the specified file in the repository with new
bytes.

voi d noveFil e (RepositoryFile sourceFile,
String dest Fol der Pat h)

Moves the specified file from the repository to a folder
specified in dest Fol der Pat h.

voi d renameRobot (RepositoryFile robotFile,
String newNane)

Renames the specified robot file.

voi d del et eFol der (String project Nane,
String fol derPat h)

Deletes the specified folder in the repository.

voi d del et eRoboServer (String cl usterNane,
RoboSer ver roboServer)

Deletes a RoboServer.

Map<String, String> getlnfo()

Returns information about the Management Console and
the Repository API

The method returns a mapping of the following:

= "application" to the version of the Management
Console containing major, minor and dot version, for
example, 10. 0.0

= "repository” to the ID of the latest DTD used
by the Repository API, for example, / / Kapow
Technol ogi es// DTD Repository 1.5//EN

= "rgl" to the ID of the latest DTD used by the Robot
Query Language API, for example, / / Kapow
Technol ogi es// DTD RoboSuite Robot Query
Language 1.13//EN

Note The full path is relative to your project folder.

Proxy servers must be specified explicitly when creating the Reposi t oryd i ent . Standard http proxy
servers without authentication are supported. NTLM proxy servers with authentication is also supported.

Check the Reposi toryC i ent JavaDoc for additional details

Deployment via Repository Client

The following example shows how to deploy a robot and a type from the local file system using the

Repositorydient.

29

Deployment using RepositoryClient:

String user = "test";
String password = "test1234";
Repositorydient client = new RepositoryClient("http://Iocal host:50080", user,
passwor d) ;

try {
Fi | el nput St ream r obot St ream = new Fi | el nput St ream

("c:\\ MyRobot s\ \ Li brary\\ Test . robot");
Fi | el nput Stream typeStream = new Fi | el nput St ream
("c:\\ MyRobot s\ \ Li brary\\ Test . type");

/'l Use the Kapow Java APls StreanUtil to convert |InputStreamto byte[].
/] For production we recomend | OUtils.toByteArray(lnputStreami)

in the coomons-io |ibrary from apache.
byte[] robotBytes = Streanmtil.readStrean(robotStrean).toByteArray();
byte[] typeBytes = Streantil.readStrean(typeStrean).toByteArray();

/'l we assume that no one has del eted the Default project
client. depl oyRobot ("Default project", "Test.robot", robotBytes, true);
client.depl oyType("Default project", "Test.type", typeBytes, true);

}
catch (Fil eNot FoundException e) {
Systemout.println("Could not load file fromdisk " + e.getMessage());

}
catch (I OException e) {
Systemout.println("Could not read bytes fromstream" + e.getMessage());

}

catch (Fil eAl readyExi st sException e) {
/] either the type or file already exist in the give project
System out . printl n(e. get Message());

}

Repository Rest API

The repository API is actually a group of restful services (and URLs where data can be posted).

All the Repository Client methods that retrieve information from the repository sends XML to the
Repository, and the Repository responds with XML. All deploy methods post bytes to the Repository
(information encoded in URL) and the Repository return XML to acknowledge. The format of the XML
sent and received is governed by a DTD found at www.kapowtech.com.

Here is an example of all the XML based requests, all messages must start with the following declaration

<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE r eposi tory-request PUBLIC "-//Kapow Technol ogi es//
DTD Repository 1.3//EN' "http://ww.kapowt ech. conl r obosui t e/
repository_1 5.dtd">

If the Management Console is deployed at http://localhost:8080/ManagementConsole, the requests must
be posted to htt p: / /| ocal host : 8080/ Managenent Consol e/ secur e/ Reposi t or yAPI ?f or mat =xm

Snippets

A number of XML snippets are used throughout the API and the following are snippets used in the
examples. We recommend studying the DTD to understand the structure of the data.

When sending requests we often need to describe a file. Similarly, responses contain data about a file.
The following table shows snippets that are found shortened out in the examples. The constructs have
been added to the 1.5 DTD to assist in project synchronization between Design Studio and Management
Console.

http://www.kapowtech.com/robosuite/repository_1_3.dtd

Kofax Kapow Developer's Guide

Snippet Name

Code

repository-file-request

<repository-file-request> <project-
name>Def aul t proj ect </ proj ect - name>
<nanme>ExNane</ nane> <type>sni ppet </
type> <pat h>subf ol der </ pat h> <| ast -
nmodi fi ed>2015-02-01 19: 26: 12. 321</| ast -
nmodi fi ed> <l| ast - nodi fi ed- by>user nane</
| ast - modi fi ed- by> <checksunra342ddaf </
checksune </repository-file-request>

repository-file

<repository-fil e><nanme>fil enane</

nane> <t ype>ROBOT</ nane><| ast -

nodi fi ed>2015-02-01 19: 26: 12. 321</| ast -
nodi fi ed><| ast - nodi fi ed- by>user name</

| ast - nodi fi ed- by><checksunra342ddaf </
checksunmr<dependenci es><dependency><nane>ex
nane><t ype>sni ppet </ t ype></ dependency> </
dependenci es></repository-fil e>

REST Operations

Method

Example Request

Example Response

delete-file (robot)

<repository-request> <del et e-
file file-type="robot"
silent="true"> <project-
nanme>Def aul t proj ect </ proj ect -
nane> <fil e- name>| nput A. t ype</
file-name> </delete-file> </
repository-request>

<reposi tory-response><del et e-
successful / ></repository-
response>

delete-file (type)

<repository-request> <del et e-
file file-type="type"
silent="fal se"> <project-
nanme>Def aul t proj ect</project-
name> <fil e- name>| nput A. t ype</
file-name> </delete-file> </
reposi tory-request >

<reposi tory-response><error
type="fil e-not-found">Coul d
not find a Type naned
Input A. type in project
"Default project'</error></
repository-response>

delete-file (snippet)

<repository-request> <del et e-
file file-type="snippet"
silent="true"> <project-
nanme>Def aul t proj ect </ proj ect -
nanme> <fil e-nanme>l nput A. type</
file-name> </delete-file> </
reposi tory-request >

<r eposi tory-response><del et e-
successful / ></repository-
response>

delete-file (resource)

<reposi tory-request> <del et e-
file file-type="resource"
silent="true"> <project-
nanme>Def aul t proj ect </ proj ect -
name> <fil e-nane>l nput A. type</
file-name> </delete-file> </
repository-request >

<reposi tory-response><del et e-
successful / ></repository-
response>

shi ppet </

31

Kofax Kapow Developer's Guide

Method

Example Request

Example Response

get-projects

<reposi tory-request> <get -
projects/> </repository-
request >

<reposi tory-response><proj ect -
| i st ><pr oj ect - nane>Def aul t

pr oj ect </ pr oj ect - nanme></
project-list></repository-
response>

get -robot s-i n-proj ect

<reposi tory-request> <get-
robot s-i n- proj ect> <proj ect -
nanme>Def aul t proj ect </ proj ect -
nane> </ get-robots-in-project>
</repository-request>

<r eposi tory-response><robot -

| i st ><r obot ><r obot -

nane>DoNot hi ng. r obot </

r obot - nane><ver si on>7. 2</

ver si on><| ast -

nodi fi ed>2011-10-11

18: 24: 12. 648</| ast - nodi fi ed></
robot ></robot -1i st ></
repository-response>

32

Kofax Kapow Developer's Guide

Method

Example Request

Example Response

get -robot -si gnature

<reposi tory-request> <get-
robot - si gnat ure> <proj ect -
nane>Defaul t project</
proj ect - nane> <robot -
nane>DoNot hi ng. r obot </ r obot -
nane> </ get-robot-signature>
</repository-request>

<reposi tory-response><robot -
si gnat ur e><r obot -
nane>DoNot hi ng. r obot </

r obot - nanme><ver si on>7. 2</

ver si on><| ast -

nodi fi ed>2011-10-11

18: 24:12. 648</ | ast -

nmodi fi ed><i nput - obj ect -

| i st ><i nput - obj ect ><vari abl e-
name>| nput A</ vari abl e-
name><t ype- nane>| nput A</

t ype- nane><i nput -
attribute-list><input-

attri bute><attribute-
nane>aString</attri bute-
nane><attri bute-type>Short
Text</attribute-type></

i nput -attri bute><input -

attri bute><attri bute-
nane>anl nt </ attri but e-
nane><attri bute-type>l nteger</
attri bute-type></

i nput -attri bute><input -

attri bute><attribute-
nane>aNunber </ attri but e-
nane><attri but e-type>Nunber </
attri bute-type></

i nput -attri bute><input -

attri bute><attribute-
nane>aSessi on</attri bute-
nane><attri bute-type>Sessi on</
attri bute-type></

i nput -attri bute><input-

attri bute><attribute-
nane>aBool ean</attri but e-
nane><attri but e-type>Bool ean</
attribute-type></

i nput -attri bute><input -

attri bute><attribute-
nane>aDat e</ attri but e-
nane><attri but e-type>Dat e</
attribute-type></

i nput -attri bute><input -

attri bute><attribute-
nane>aChar act er </
attribute-nane><attribute-
type>Character</attribute-
type></input-attribute><input-
attri bute><attri bute-
nane>anl nage</attri but e-
nane><attri bute-type>l mage</
attribute-type></input-
attribute></input-attribute-
|'i st></i nput-object ><i nput -
obj ect ><vari abl e- nane>| nput B</
vari abl e- nane><t ype-
nane>| nput B</ t ype-

name><i nput-attri bute-
list><input-attribute

requi red="true"><attribute-
nane>aString</attri bute-
nanmne><attri but e-t vbe>Short

33

Kofax Kapow Developer's Guide

Method

Example Request

Example Response

get-clusters

<reposi tory-request> <get -
clusters/> </repository-
request >

<repository-
response><cl ust er s><cl uster
name="Cl uster 1"

ssl ="f al se" ><r oboserver

host ="l ocal host" port="50000"/
></ cl ust er ></ cl ust er s></
repository-response>

get-current-date

<reposi tory-request> <get-
current-date/ > </repository-
request >

<r eposi tory-response>
<current -dat e>2015- 02-01

19: 26: 12. 321</ current -date> </
repository-response>

get - bytes

<reposi tory-request> <get -
byt es> <repository-file-

r equest >EXAMPLE</ r eposi tory-
file-request> </get-bytes> </
reposi tory-request >

<repository-response> <file-
content> <fil e-bytes><!

[CDATA[BASE 64 Encoded
file content ---]]> </file-
bytes> </file-content> </
repository-response>

get-project-inventory

<reposi tory-request> <get-

proj ect-inventory> <project-
nanme>Def aul t proj ect </ proj ect -
nanme> </ get-project-inventory>
</repository-request>

<repository-response>

<reposi tory-fol der> <pat h></
pat h> <sub-f ol der s>

-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero

one or nore repository-

file elenments -- </files>
<references> -- zero, one or
nmore repository-file elenents
needed by robots in fol der --
</references> </repository-
fol der> </repository-response>

get-fol der-inventory

<repository-request> <get-

fol der-inventory> <project-
nanme>Def aul t proj ect </ proj ect -
nanme> <pat h>subf ol der </ pat h>
</ get-fol der-inventory> </
repository-request >

<reposi tory-response>

<reposi tory-fol der> <pat h></
pat h> <sub-f ol der s>

-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero

one or nore repository-

file elenents -- </files>
<references> -- zero, one or
nore repository-file el ements
needed by robots in folder --
</references> </repository-
fol der> </repository-response>

34

Kofax Kapow Developer's Guide

Method

Example Request

Example Response

get-file-inventory

<reposi tory-request> <get-
file-inventory> <project-
nane>Def aul t project</project-
nanme> <pat h>subf ol der </

pat h> <nane>r obot nane</ nanme>
<t ype>robot </ type> </ get -
file-inventory> </repository-
request >

<reposi tory-response>
<reposi tory-fol der> <pat h></
pat h> <sub-f ol der s>

-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero

one or nore repository-
file elenments -- </files>
<references> -- zero, one or

nore repository-file el ements
needed by robots in folder --
</references> </repository-

fol der> </repository-response>

update-file

<reposi tory-request> <updat e-
file> <repository-file-
request>...</repository-
file-request> <fil e-bytes><

[CDATA[BASE 64 Encoded
file content ---]]> </update-
file> </repository-request>

<r eposi tory-response> <updat e-
successful /> </repository-
response>

get-clusters

<repository-request>
<get-clusters online-
roboserver="true' /> </
reposi tory-request >

<reposi tory-response>

<cl usters> <cl uster

nane=' C ust er Nane

ssl ='fal se' > <roboserver
host =' | ocal host' port="50000
primary="true'/> </cluster>
</clusters> </repository-
response>

add- r oboser ver

<repository-request> <add-
roboserver> <cl uster

nane=' Cl ust er Nane'

ssl =" fal se' > <roboserver
host =' | ocal host' port="'"50000
primary="true'/> </cluster>
<roboserver host='1ocal host"'
port="50001" primry="true'/
> </ add-roboserver> </
repository-request>

<repository-response>

<cl usters> <cl uster

nanme=' Cl ust er Nane'

ssl =' fal se' > <roboserver

host =' | ocal host' port="50000'
primary="true'/> <roboserver
host =' | ocal host' port="50001'
primary="true'/> </cluster>
</clusters> </repository-
response>

del et e-roboserver

<repository-request> <add-
roboserver> <cl uster
nanme=' C ust er Nane'

ssl ='fal se' > <roboserver

host =' | ocal host' port="'50000
primary="true'/> <roboserver
host =' | ocal host' port='50001
primary="true'/> </cluster>
<roboserver host='1ocal host"
port='50001" primary="true'/
> </ add-roboserver> </
repository-request >

<r eposi tory-response>

<cl uster name='Cl uster Nane

ssl =' fal se' > <roboserver

host =' | ocal host' port='50000
primary="true' /> </cluster> </
repository-response>

35

Kofax Kapow Developer's Guide

Method Example Request

Example Response

del et e-f ol der <repository-request> <del et e-
f ol der > <proj ect - nanme>Def aul t
pr oj ect </ pr oj ect - nane>

<pat h>pat h/ t o/ enpty/ f ol der </
pat h> </ del ete-fol der> </

repository-request >

<reposi tory-response> <del et e-
successful /> </repository-
response>

move-file <reposi tory-request> <nove-
file> <repository-file-
request>...</repository-
fil e-request> <pat h>new
desti nati on/ pat h</ pat h> </
nove-file> </repository-

request >

Renane- r obot <reposi tory-request> <renane-
robot > <repository-file-
request>...</repository-
file-request> <file-
name>newnaneof robot </fil e-
name> </ renane-robot> </

reposi tory-request >

<reposi tory-response> <updat e-
successful /> </repository-
response>

<reposi tory-response> <updat e-
successful /> </repository-
response>

Note Robot, Type, Snippet, and Resource names must be specified as full path. The full path is relative

to your project folder.

The deployment is done by posting the raw bytes (the octet-stream is sent as a post body) to the following
URLs. Here is an example where the repository is deployed on http://localhost:8080/ManagementConsole

Methods of the deploy operations:

Operation URL

depl oy robot
Reposi t or yAPI| ?

http://1 ocal host: 8080/ Managenent Consol e/ secur e/

f or mat =byt es&oper at i on=depl oyRobot &pr oj ect Name=Def aul t
proj ect & i | eName=DoNot hi ng. r obot & ai | | f Exi st s=true

depl oy type
Reposi t or yAPI ?

depl oy Sni ppet
Reposi t or yAPI ?

http://1 ocal host: 8080/ Managenent Consol e/ secur e/

f or mat =byt es&oper at i on=depl oyType&pr oj ect Nane=Def aul t
proj ect & i | eName=I nput A. t ype&f ai | | f Exi st s=true

http://1 ocal host: 8080/ Managenent Consol e/ secur e/

f or mat =byt es&oper at i on=depl oySni ppet &pr oj ect Nane=Def aul t
proj ect & i | eName=A. sni ppet & ai | | f Exi st s=true

depl oy resource
Reposi t or yAPI ?

http://1ocal host: 8080/ Managenent Consol e/ secur e/

f or mat =byt es&oper at i on=depl oyResour ce&pr oj ect Name=Def aul t
proj ect & i | eName=r esour ce. t xt & ai | | f Exi st s=true

36

Kofax Kapow Developer's Guide

Operation

URL

deploy library

http://1ocal host: 8080/ Managenent Consol e/ secur e/

Reposi t or yAP| ?

f or mat =byt es&oper at i on=depl oyLi br ar y&pr oj ect Nane=Def aul t
proj ect & i | eName=NA&f ai | | f Exi st s=true

If authentication is enabled on Management Console the URL htt p:/ /| ocal host : 8080/

Managenent Consol e/ secur e/ Reposi t or yAPI is protected by basic authentication. This allows you to
include credentials in the URL in the following manner ht t p: / / user nanme: passwor d@ ocal host : 8080/
Managenent Consol e/ secur e/ Reposi t or yAPI .

37

Chapter 2

NET Programmer's Guide

This guide describes how to execute Robots using the Kapow .NET API. The guide assumes that you
have completed the Design Studio tutorials and know how to write simple Robots, and that you are
familiar with the C# programming language.

The programmer's guide has been completely rewritten for version 9.1, as large portions of the API has
been deprecated, and a new execution API has been created. The API is still backwards compatible, but
you should familiarize yourself with the new API and consider rewriting existing application to use the new
API, as the deprecated classes will be removed in future releases.

The old Robot Execut er has been deprecated because of the following reasons

= Robots would continue to execute on RoboSer ver even after an RQLExcept i on was thrown by the API.

» Robots would continue to execute even if RoboSer ver lost connection to the client, resulting in log
errors for every Return Value executed.

= The distribution policies didn't look at server capacity when distributing requests.

= It was cumbersome to implement object streaming, because there were many hidden pitfalls when
implementing a custom RQLHandI er

You can still find the old .NET programmer's guide, at http://help.kapowtech.com/8.2/topic/doc/dotnet/
Top.html

Details about specific classes can be found in the compiled help, r obosui t e- dot net - api . chm | ocat ed
i n \ AP\ r obosui t e- dot net - api \ docs inside the Kapow installation folder.

.Net Basics

By using the .NET API, any .NET based application (.NET 4.0 required) can become a client to
RobosSer ver . In addition to running robots that store data in a database, you can also have the robots
return data directly back to the client application. Here are some examples:

= Use multiple robots to do a federated search, which aggregates results from multiple sources in real
time.

= Run a robot in response to an event on your application back-end. For instance run a robot when a
new user signs up, to create accounts on web-based systems not integrated directly into your back-
end.

The basic section of this guide will introduce the core classes, and how to use them for executing robots.
We will also describe how to provide input to robots and control their execution on RoboSer ver .

The .NET APl is a .dll file, and it is located in /API/robosuite-dotnet-api/lib/robosuite-dotnet-api.dll inside
the Kapow installation folder, see the Important Folders in Kapow topic in the Installation Guide for details.

Kofax Kapow Developer's Guide

All examples in this guide can also be found in /APIl/robosuite-dotnet-api/examples. Located next to
the .NET API is log4net.dll which is a required 3rd-party library.

First Example

Let's start by looking at the code required to execute the robot named NewsMagazi ne. r obot , which is
located in the Tutorials folder of the default project. The robot outputs its results using the Return Value
step action, which makes it easy to handle the output programmatically using the API. Other robots
(typically those run in a schedule by the Management Console) store their data directly in a database
using the Store in Database step action, in which case data collected by the robot will not be returned to
the API client.

In the following, we will look at how to execute the NewsMagazi ne robot and process the output
programmatically.

Execute a Robot without input:

usi ng System
usi ng System Col | ecti ons. Generi c;
usi ng System Text;
usi ng Com KapowTech. RoboSui t e. Api ;
usi ng Com KapowTech. RoboSui t e. Api . Reposi t ory. Construct;
usi ng Com KapowTech. RoboSui t e. Api . Construct;

namespace Exanpl es

cl ass Program

{
static void Main(string[] args)
var server = new RoboServer ("l ocal host", 50000);
var ssl = fal se;
var cluster = new Custer("Mduster", new RoboServer[]{ server}, ssl);
Request . Regi sterCluster(cluster); // you can only register a cluster
once per application
var request = new Request ("Library:/Tutorial s/ NewsMagazi ne. robot");
request . Robot Li brary = new Def aul t Robot Li brary();
Rgl Result result = request.Execute("M/d uster");
foreach (Rgl Gbj ect value in result. Get Qut put Obj ect sByNane("Post")) {
var title = value["title"];
var preview = val ue["preview'];
Consol e. WitelLine(title + ", " + preview;
}
Consol e. ReadKey() ;
}
}

}

Let's start by looking at the classes involved and their responsibilities.

RoboSer ver This is a simple value object that identifies a RoboSer ver which can execute
robots. Each RoboSer ver must be activated by a Management Console and
assigned KCU before use.

Cl uster A cluster is a group of RoboSer ver functioning as a single logical unit.

Request This class is used to construct the robot request. Before you can execute any
requests you must register a cluster with the Request class.

Kofax Kapow Developer's Guide

Def aul t Robot Li brary A robot library instructs RoboSer ver where to find the robot identified in the
request. Later examples will explore the various robot library types and when/
how to use them.

RQ.Resul t This contains the result of a robot execution. The result contains value
responses, log and server messages.
RQLObj ect Each value that is returned from a robot using the Return Value action can be

accessed as an RQLObj ect .

Now let's go through each line in the example an look at the specifics.

The first line tells the API that our RoboSer ver is running on localhost port 50000.

var server = new RoboServer ("l ocal host", 50000);

The next three lines defines a cluster with a single RoboSer ver . The cluster is registered with the Request
class, allowing you to execute request on this cluster. Each cluster may only be registered once per
application, this is usually done during the initialization of the application.

Registering a cluster:

var ssl = fal se;
var cluster = new Custer("M/Custer", new RoboServer[]{ server}, ssl);
Request . Regi sterCl uster(cluster);

This is then followed by code that creates a request that will execute the robot named

NewsMagazi ne. r obot located at Library:/Tutorials Library:/ refers to the robot Library configured for the
request. Here the Def aul t Robot Li br ary is used, which instructs RoboSer ver to look for the robot in the
servers local file system, see Robot Libraries for details on how to use robot libraries.

var request = new Request ("Library:/Tutorial s/ NewsMagazi ne. robot");
request. Robot Li brary = new Def aul t Robot Li brary();

The next line executes the robot on the cluster named MyCl ust er (the cluster we previously registered)
and returns the result once the robot is done. If an error occurs while the robot is executing an exception
will be thrown here.

Rgl Result result = request.Execute("M/d uster");
Finally we process the extracted values. First we get all extracted values of the type named Post , and

iterate through them. For each RQLObj ect we access the attributes of the Post type, and print the result.
We will look at attributes and mappings in a later section.

foreach (Rgl Qbj ect value in result. Get Qut put Gbj ect sByNane("Post")) {
var title = value["title"];

var preview = val ue["preview'];

Consol e. WitelLine(title + ", " + preview;

Robot Input

Most robots executed through the API will be parametrized through input, such as a search keyword,
or login credentials. Input to a robot is part of the request to RoboSer ver, and is provided using the
creat el nput Var i abl e method on the request. Let us look at a short code fragment.

Input using implicit RQLODbjectBuilder

var request = new Request("Library:/Tutorials/Input.robot");

Kofax Kapow Developer's Guide

request. Creat el nput Vari abl e("userLogi n"). SetAttri buteEntry
("username", "scott").SetAttributeEntry("password", "tiger");

Here we create a Request and use Cr eat el nput Vari abl e to create an input variable named user Logi n.
We then use set At t ri but e to configure the username and password attributes of the input variable.

The above example is a common shorthand notation, but can also be expressed move verbosely by using
the Rql Obj ect Bui | der :

var request = new Request ("Library:/NewsMagazi ne. robot");

Rgl Ooj ect Bui | der userLogi n = request. Creat el nput Vari abl e("userLogi n");

user Logi n. Set Attri buteEntry("usernane", "scott");
userLogin. Set Attri buteEntry("password", "tiger");

The two examples are identical. The first utilizes the cascading method invocation on the anonymous
Rgl Obj ect Bui | der and is therefore shorter.

When RoboSer ver receives this request the following occurs:
* RoboServers loads | nput . r obot (from whatever Robot Li br ary is configured for the request).

= RoboSer ver verifies that the robot has a variable named user Logi n and that this variable is marked as
input.

* RoboServer now verifies that the attributes we have configured using set At t ri but e are compatible
with the type of variable user Logi n. Which means that the type must have attributes named username
and password and that these must both be text based attributes (the next section will describe the
mapping between API and Design Studio attributes).

= If all input variables are compatible, RoboSer ver will start executing the robot.

If a robot requires multiple input variables, you must create all of them in order to execute the robot. You
only have to configure required attributes, any no-required attributes that you don't configure through the
API will just have a null value. If we assume you have a robot that requires login to both Facebook and
Twitter, you could define the input like this.

Request request = new Request ("Library:/Input.robot");
request. Creat el nput Vari abl e("facebook"). Set AttributeEntry
("usernanme", "scott").SetAttributeEntry("password", "facebookl123");
request. Creat el nput Vari abl e("twitter"). SetAttributeEntry
("username", "scott").SetAttributeEntry("password", "twtter123");

Attribute Types

When you define a new type in Design Studio you select an attribute type for each attribute. Some of
these attributes can contain text, like Short text, Long Text, Password, HTML, XML, and when used
inside a robot there may be requirements to the text stored in these attributes. If you store text in a XML
attribute, the text must be a valid XML document. This validation occurs when the type is used inside a
robot, but since the API doesn't know anything about the type it doesn't validate attribute values in the
same manner. As a result the API only has 8 attribute types versus the 19 available in Design Studio This
table shows the mapping between the API and Design Studio attribute types.

API to Design Studio mapping

API Attribute Type Design Studio Attribute Type

Text Short Text, Long Text, Password, HTML, XML, Properties, Language, Country,
Currency, Refind Key

41

Kofax Kapow Developer's Guide

API Attribute Type Design Studio Attribute Type
Integer Integer

Boolean Boolean

Number Number

Character Character

Date Date

Session Session

Binary Binary, Image, PDF

The API attribute types are then mapped to .NET in the following way.

.Net Types for Attributes

API Attribute Type Java Class

Text System Stri ng (string)

Integer System | nt 64

Boolean Syst em Bool ean (bool)

Number Syst em Doubl e (double)

Character Syst em Char (char)

Date System Dat eTi ne

Session Com Kapowt ech. Robosui t e. Api . Construct. Sessi on
Binary Com Kapowt ech. Robosui t e. Api . Construct. Bi nary

The Rgl Obj ect Bui | der set Attri but e method is overloaded so you don't need to specify the attribute
type explicitly when configuring an attribute through the API, as long as the right .NET class is used as
argument. Here is an example that shows how to set the attributes for an object with all possible (Design
Studio) attribute types.

Recommended usage of setAttribute:

Rqgl Qoj ect Bui | der i nput Bui | der =
i nput Bui | der.
nput Bui | der.
nput Bui | der .
nput Bui | der.
nput Bui | der.
nput Bui | der .
nput Bui | der .
nput Bui | der.
nput Bui | der .
nput Bui | der.
nput Bui | der.
nput Bui | der .
nput Bui | der .
nput Bui | der.
nput Bui | der .
nput Bui | der .
nput Bui | der.
nput Bui | der .
nput Bui | der.

request. Creat el nput Vari abl e(" Al | Types");
Set AttributeEntry("anlnt", 42L);

Set AttributeEntry("aNunber", 12.34d);

Set AttributeEntry("aBool ean", true);

Set AttributeEntry("aCharacter", 'c');

Set AttributeEntry("aShort Text", "some text");

Set AttributeEntry("aLongText"”, "a |onger text");

Set AttributeEntry("aPassword", "secret");

Set AttributeEntry("aHTM.", "<htm >bl a</htm >");

Set AttributeEntry("anXM", "<tag>text</tag>");

Set AttributeEntry("aDate", DateTi me. Now);

Set AttributeEntry("aBinary", (Binary) null);

Set AttributeEntry("aPDF", (Binary)null);

Set Attri buteEntry("anl mage", (Binary)null);

Set AttributeEntry("aProperties", "nane=val ue\ nnane2=val ue2");
Set AttributeEntry("aSession", (Session)null);

Set AttributeEntry("aCurrency", "USD');
Set AttributeEntry("aCountry", "US");
Set Attribut eEntry("alLanguage”, "en");

Set Attri buteEntry("aRefi ndKey", "Never use this as input");

42

Kofax Kapow Developer's Guide

Notice that in the above example we have to cast null values, because the C# compiler can't otherwise
determine which of the overloaded version of Set At t ri but eEnt ry method we want to call. However
since unconfigured attributes will automatically be null, you never need to set null explicitly.

It is possible to specify the Attri but e and At tri but eType explicitly when creating input using the API.
This is approach is not recommended, but may be needed in rare cases, and would look like this.

Not recommended usage of set Attri bute

Rql Cbj ect Bui | der i nput Bui | der = request. Creat el nput Vari abl e("al | types");
i nput Bui | der. Set AttributeEntry(new AttributeEntry("anlnt", "42",
AttributeEntryType.|nteger));

i nput Bui | der. Set Attri buteEntry(new AttributeEntry("aNunber", "12.34",
AttributeEntryType. Nunber));

nput Bui | der. Set Attri buteEntry(new Attri but eEntry("aBool ean", "true",
Attri but eEntryType. Bool ean));

nput Bui | der . Set Attri buteEntry(new Attri buteEntry("aCharacter”, "c",
AttributeEntryType. Character));

i nput Bui | der. Set Attri buteEntry(new AttributeEntry("aShortText", "sonme text",
AttributeEntryType. Text));
i nput Bui | der. Set AttributeEntry(new AttributeEntry("alLongText", "a |longer text",

Attribut eEntryType. Text));

nput Bui | der. Set Attri buteEntry(new Attri buteEntry("aPassword", "secret",
AttributeEntryType. Text));

nput Bui | der. Set Attri buteEntry(new AttributeEntry("aHTM.", "<html >bl a</html >",
AttributeEntryType. Text));

nput Bui | der. Set Attri buteEntry(new AttributeEntry("anXM", "<tag>text</tag>",
AttributeEntryType. Text));

nput Bui | der. Set Attri buteEntry(new Attri buteEntry("aDate",
"2012-01-15 23:59:59.123", AttributeEntryType.Date));

nput Bui | der . Set Attri buteEntry(new Attri buteEntry("aBi nary", null,
AttributeEntryType. Binary));

nput Bui | der. Set Attri buteEntry(new Attri buteEntry("aPDF", null,
AttributeEntryType. Binary));

nput Bui | der. Set Attri buteEntry(new Attri buteEntry("anl mage", null,
Attri buteEntryType. Bi nary));

nput Bui | der. Set Attri buteEntry(new Attri buteEntry("aProperties”,
"nane=val ue\ nnane2=val ue2", AttributeEntryType. Text));

nput Bui | der. Set Attri buteEntry(new Attri buteEntry("aCurrency", "USD',
AttributeEntryType. Text));

nput Bui | der. Set Attri buteEntry(new Attri buteEntry("aCountry", "US",
Attribut eEntryType. Text));

nput Bui | der . Set Attri buteEntry(new Attri buteEntry("alLanguage", "en",
AttributeEntryType. Text));

i nput Bui | der. Set Attri buteEntry(new AttributeEntry("aRefindKey",

"Never use this as input", AttributeEntryType. Text));

As we can see all attribute values must be provided in the form of strings. The string values are then
converted to the appropriate .NET objects based on the At t ri but eEnt r yType provided. This is only
useful if you build other generic APls on top of the Kapow .NET API.

Execution Parameters

In addition to the Cr eat el nput Var i abl e method, the Request contains a number of properties that
controls how the robot executes on RoboSer ver .

Kofax Kapow Developer's Guide

Execution Control Methods on Request

MaxExecuti onTi ne

This property controls the maximum number of seconds
the robot can execute. When this time has elapsed the
robot will be stopped by RoboSer ver . The timer doesn't
start until the robot begins to execute, so if the robot is
queued on RoboSer ver this is not taken into account.

St opOnConnect i onLost

This property (true by default) controls if RoboSer ver
will stop the robot if it discovers that the connection to
the client application has been lost. You should have a
very good reason for setting this value to false - if your
code is not written to handle this, your application will not
perform as expected.

St opRobot OnApi Excepti on

This property (true by default) instructs RoboSer ver to
stop the robot when the first API exception is raised. By
default most steps in a Robot will raise an API exception
if the step fails to execute - this is configured on the
steps error handling tab.

When set to false, the robot will continue to execute
regardless of API exceptions, however unless your
application is using a | Robot ResponseHandl er for
streaming the results, an exception will still be thrown by
Execute(), so be extremely careful when setting this to
false.

User nanme, Password

These properties are used to set the credentials. This
is used when RoboSer ver is configured to require
authentication. When this option is enabled, the client
must provide credentials or RoboSer ver will reject the
request.

Robot Li brary

This property is used to assign a Robot Li br ary to the
request. A robot library instructs RoboSer ver where to
find the robot identified in the request. Later examples
will explore the various robot library types and when/how
to use them.

Executionld

Allows you to set the execut i onl d for this request. If
you don't provide one, RoboSer ver will generate one
automatically. The execution ID is used for logging, and
also needed if your client needs to be able to stop the
robot programmatically. The ID must be globally unique
(over time). If two robots use the same execution ID, the
logs will be inconsistent.

Setting this is useful if your robots are part of a larger
workflow and you already have a unique identifier in your
client application, as this allows you to easily join the
robot logs with the rest of the system.

44

Kofax Kapow Developer's Guide

set Proj ect (String) This is used solely for logging purposes. The
Management Console uses this field to link log
messaged to project, so the log views can filter by
project.

If your application is not using the

Reposi t or yRobot Li br ary you should probably set
this value to inform the RoboSer ver logging system
which project (if any) this robot belongs to.

Robot Libraries

In Design Studio robots are grouped into projects. If you look in the file system you will see that these
projects are represented by a folder with the only constraint that it must contain a folder named Library.

When you build the execute request for RoboSer ver , you identify the robot by a robot URL, like this:
Request request = new Request ("Library:/Input.robot");

Here, Li brary:/ is a symbolic reference to a robot library, in which the RoboSer ver should look for the
robot. The Robot Li br ary is then specified on the builder like this:

request . set Robot Li brary(new Def aul t Robot Li brary());
There are three different robot library implementations, which one to select depends on you deployment

environment.

Robot Libraries

Library Type Description

Def aul t Robot Li brary This configures RoboSer ver to look for the robot in
the current project folder. This folder is defined in the
Settings application.

If you have multiple RoboSer ver s you will have to
deploy your robots on all RoboSer ver s.

This robot library is not cached, so the robot is reloaded
from disk with every execution. This makes the

library usable in a development environment where
robots change often, but not suitable for a production
environment.

Kofax Kapow Developer's Guide

Library Type

Description

EnbeddedFi | eBasedRobot Li brary

This library is embedded in the execute request sent to
RoboSer ver . To create this library you must create a
zip file containing the robots and all its dependencies
(types, snippets and resources). This can be done the
Tool s->Create Robot Library File menuin
Design Studio.

The library is sent with every request, which adds
some overhead for large libraries, but the libraries are
cached on RoboSer ver , which offers best possible
performance.

One strength is that robots and code can be deployed
as a single unit, which offers clean migration from QA
environment to production environment. However, if
the robots change often you will have to redeploy them
often.

You can use the following code to configure the
embedded robot library for your request.

var request = new Request

("Library:/ Tutorial s/ NewsMagazi ne.
robot");

var stream = new Fil eStream
("c:\\enbeddedLi brary. robotlib",
Fi | eMbde. Open) ;
request. Robot Li brary =
new EnmbeddedFi | eBasedRobot Li brary
(stream;

46

Kofax Kapow Developer's Guide

Library Type Description

Reposi t or yRobot Li brary This is the most flexible Robot Li brary.

This library uses the Management Console's built-in
repository as a robot library. When you use this library,
RoboSer ver will contact the Management Console
which will send a robot library containing the robot and
its dependencies.

Caching occurs on a per robot basis, inside both
Management Console and RoboSer ver . Inside
Management Console, the generated library is
cached based on the robot and its dependencies. On
RoboSer ver, the cache is based on a timeout, so

it doesn't have to ask the Management Console for
each request. In addition, the library loading between
RoboSer ver and Management Console uses HTTP
public/private caching, to further reduce bandwidth.

If NewsMagazi ne. r obot has been uploaded to the
Management Console we could use the repository robot
library like this when executing the robot:

var request = new Request
("Li brary:/ Tutorial s/ NewsMagazi ne.
robot");
request . Robot Li brary =
new RepositoryRobotLi brary
("http://1ocal host: 50080",

“Default Project”, 60000);

This will instruct RoboSer ver to load the robot from a
local Management Console and cache it for one minute
before checking with the Management Console to see
if a new version of the robot (it's type and snippets) has
been changed.

In addition any resource loaded through the Library:/
protocol, will cause RoboSer ver request the resource
directly from the Management Console.

.NET Advanced

In this section we will look a little closer at some of the more advanced features on the API. These include
output streaming, logging and SSL configuration, as well as parallel execution.

Load Distribution

Lets look a little closer at what happens inside the Request Execut or . The executor is given an array of
RoboSer ver s. As the executor is constructed it tries to connect to each RoboSer ver . Once it is connected
it sends a ping request to each RoboSer ver to discover how the server is configured.

Load balanced executor

RoboServer prod = new RoboServer (" prod. kapow. | ocal ", 50000) ;

RoboServer prod2 = new RoboServer ("prod2. kapow. | ocal ", 50000);

Cluster cluster = new G uster("Prod", new RoboServer[]{ prod, prod2}, false);
Request . Regi sterd uster(cluster);

Lets look a little closer at what happens inside the Request Execut or . The executor is given an array of
RoboSer ver s. As the executor is constructed it tries to connect to each RoboSer ver . Once it is connected
it sends a ping request to each RoboSer ver to discover how the server is configured.

Load is distributed to each online RoboSer ver in the cluster, based on the number of unused execution
slots on the RoboSer ver . The next request is always distributed to the RoboSer ver with the most
available slots. The number of available execution slots is obtained through the initial Ping response, and
the executor keeps track of each robot it starts, and when it completes. The number of execution slots on
a RoboSer ver is determined by the max concurrent robots on the Servers tab.

If a RoboSer ver goes offline it will not receive any robot execution requests before it has successfully
responded to the ping request.

Two Client Rule

You should only have one API client using a given cluster of RoboSer ver . If you have multiple .NET
applications running robots against the same RoboSer ver s, this will result in reduced performance.

Data Streaming

Sometimes you need to present the results from a robot execution in real-time, as the robot is executing.
In these cases you want the API to return the extracted values immediately instead of waiting for the robot
to finish its execution and access the Rgl Resul t .

The API offers the possibility to receive a callback every time the API receives a value that was returned
by the Robot. This is done through the | Robot ResponseHandl er interface.

Response streaming usingAbstractFailFastRobotResponseHandler

usi ng System

usi ng Com KapowTech. RoboSui t e. Api ;

usi ng Com KapowTech. RoboSui t e. Api . Reposi t ory. Construct;
usi ng Com KapowTech. RoboSui t e. Api . Construct;

usi ng System |G

usi ng Com KapowTech. RoboSui t e. Api . Engi ne. Hot st andby;

nanespace Exanpl es

public class DataStream ng {
public static void Main(String[] args) {

var server = new RoboServer ("l ocal host", 50000);

var cluster = new Custer("M/Custer", new RoboServer[] { server },
fal se);

Request . Regi sterCl uster(cl uster);

var request = new Request ("Library:/Tutorial s/ NewsMagazi ne. robot");
| Robot ResponseHandl er handl er = new Sanpl eResponseHandl er () ;
request. Execute("MyCluster", handler);

Kofax Kapow Developer's Guide

}
}
public cl ass Sanpl eResponseHandl er : Abstract Fai | Fast Robot ResponseHandl er
{
override public void Handl eRet ur nedVal ue(Robot Cut put Cbj ect Response
response, | Stoppabl e stoppabl e)
var title = response. Qutput Cbject["title"];
var preview = response. Qut put Obj ect["previ ew'];
Consol e. WitelLine(title + ", " + preview;
}
}

}

The above example uses the second execute method of the Request, which expects a

Robot ResponseHand! er in addition to the name of the cluster to execute the robot on. In this example
we create a | Robot ResponseHandl er by extending Abst r act Fai | Fast Robot ResponseHandl er, which
provides default error handling, so we only need to handle the values returned by the robot.

The handl eRet ur nedVal ue method is called whenever the API receives a returned value from

RoboSer ver . The Abst r act Fai | Fast Robot ResponseHandl er used in this example, will throw exceptions
in the same way as the non-streaming execute method. This means that an exception will be thrown in
response to any API exceptions generated by the robot.

The | Robot ResponseHand! er has several methods which can be grouped into 3 categories.

Robot life cycle events

Methods which are called when the robot's execution state change on RoboSer ver, such as when it starts
and finishes its execution.

Robot data events
Methods which are called when the robot returns data or errors to the API.

Additional error handling
Methods which are called either due to an error inside RoboSer ver or in the API.

Robot ResponseHandl! er - robot life cycle events

Method name Description

voi d request Sent (RoboServer roboServer, Called when the Request Execut or has found the

Execut eRequest request) server which will execute the request.

voi d request Accepted(String executionld) Called when the found RoboSer ver has accepted the
request and put it into it queue.

voi d Robot Started(I| St oppabl e st oppabl e) Called when the RoboSer ver begins to execute the
robot. This usually occurs immediately after the robot
has been queued, unless the RoboSer ver is under
heavy load, or used by multiple API clients.

49

Kofax Kapow Developer's Guide

Method name Description

voi d robot Done(Robot DoneEvent reason) Called when the robot is done executing on

RoboSer ver . The Robot DoneEvent is used to specify
if the execution terminated normally, due to an error, or if
it was stopped.

Robot ResponseHand! er - robot data events

Method name Description

voi d Called when the robot has executed a Return Value
Handl eRet ur nedVal ue(Robot Qut put Cbj ect Responsetion and the value has been returned via the socket to
response, | Stoppabl e stoppabl e) the API.

voi d Handl eRobot Error (Robot Err or Response Called when the robot raises an API exception. Under
response, | Stoppabl e stoppabl e) normal circumstances the robot will stop executing after

the first APl exception. This behavior can be overridden
by using Request.St opRobot OnApi Excepti on =

f al se, in which case this method will be called multiple
times. This is useful if you want a data streaming robot to
continue to execute regardless of any generated errors.

voi d Handl eWitelLog(Robot MessageResponse Called if the robot executes the Write Log action. This is
response, | Stoppabl e stoppabl e) useful if you wish to provide additional logging info from
within a robot.

Robot ResponseHand! er - additional error handling

Method name Description

voi d Handl eServer Error (Server Error Response | Called if RoboSer ver generates an error, for instance
response, | Stoppabl e stoppabl e) if the server is too busy to process any requests, or if an
error occurs inside RoboSer ver which prevents it from
starting the robot.

voi d handl eError (RQLException e, Called if an error occurs inside the API. Most commonly
| St oppabl e st oppabl e) if the client loses the connection to RoboSer ver .

Many of the methods will include a | St oppabl e object, this object can be used to stop for instance in
response to a specific error or value returned.

Some of these methods allow you to throw an RQLExcept i on, if you do this you should be aware of

the consequences. The thread that calls the handler is the thread that calls Request . Execut e(), this
means that any exceptions thrown will bubble up the call stack and out the execute method. If you throw
an exception in response to handl eRet ur nedVal ue, handl eRobot Error or handl eWi t eLog it is your
responsibility to invoke Stoppable.stop(), or the robot may continue to execute even though the call to
Request . Execut e() has completed.

Data streaming is most often used in one of the following use cases.

= Ajax based web application, where results are presented to the user in real-time. If data was not
streamed results could not be shown until the robot was done running.

* Robots that return so much data that the client would not be able to hold it all in memory throughout the
robots execution.

» Processes that need to be optimized so the extracted values are processed in parallel with the robot
execution.

» Processes that store data in databases in a custom format.
= Robots that should ignore or require custom handling of API exceptions (see below).

Response and error collecting using AbstractFailFastRobotResponseHandler:

usi ng System

usi ng System Col | ecti ons;

usi ng System Col | ecti ons. Generi c;

usi ng Com KapowTech. RoboSui te. Api ;

usi ng Com KapowTech. RoboSui t e. Api . Reposi tory. Construct;

usi ng Com KapowTech. RoboSui t e. Api . Construct;

using System | Q

usi ng Com KapowTech. RoboSui t e. Api . Engi ne. Hot st andby. | nt er f aces;

nanespace Exanpl es

public class DataStrean ng

{
public static void Main(String[] args)
var server = new RoboServer ("l ocal host", 50000);
var cluster = new Custer("Mduster", new RoboServer[] { server },
fal se);
Request . Regi sterCl uster(cluster);
var request = new Request ("Library:/Tutorial s/ NewsMagazi ne. robot");
request. St opRobot OnApi Exception = false; // | MPORTANT!!
Error Col | ecti ngRobot ResponseHandl er handl er =
new ErrorCol | ecti ngRobot ResponseHandl er () ;
request . Execute("M/Cluster", handler); // blocks until robot is
done, or handl er throws an exception
Consol e. WitelLi ne("Extracted val ues:");
foreach (Robot Qut put Obj ect Response response in handl er.
Get Qut put ())
var title = response. Qutput Cbject["title"];
var preview = response. Qut put Obj ect["previ ew'];
Consol e. WitelLine(title + ", " + preview;
}
Consol e. WitelLine("Errors:");
foreach (Robot ErrorResponse error in handler.GetErrors())
Consol e. WiteLine(error. ErrorLocati onCode + ", " + error.
Er r or Message) ;
}
}
}

public class ErrorColl ectingRobot ResponseHandl er
Abst ract Fai | Fast Robot ResponseHandl er {

private |List<RobotErrorResponse> _errors =
new Li st <Robot Err or Response>() ;

private |List<Robot Qut put Obj ect Response> _out put =
new Li st <Robot Qut put Obj ect Response>() ;

override public void Handl eRet ur nedVal ue(Robot Qut put Cbj ect Response

response, | Stoppabl e stoppable) {
_out put . Add(r esponse) ;

override public void Handl eRobot Error (Robot Er r or Response response,
| St oppabl e st oppabl e) {
/! do not call super as this will stop the robot
_errors. Add(response) ;

}

public |List<RobotErrorResponse> GetErrors() {
return _errors;

public |List<Robot Qut put Obj ect Response> Get Qut put () {
return _output;

}

The example above shows how to use a | Robot ResponseHandl er that collects returned values and
errors. This type of handler is useful if the robot should continue to execute even when error are
encountered, which can be useful if the website is unstable and occasionally times out. Notice that
only robot errors (APl exceptions) are collected by the handler, if the connection to RoboSer ver is lost
Request . Execut e() will still throw an RQLExcept i on (and the robot will be stopped by RoboSer ver).

For more details check the | Robot ResponseHandl er documentation in the /docs folder .

SSL

The APl communicates with RoboSer ver through an RQLSer vi ce. The RQLSer vi ce is a RoboSer ver
component which listens for API requests on a specific network port. When you start a RoboSer ver you
specify if the RoboSer ver should use the encrypted SSL service, or the plain socket service, or both
(using two different ports). All RoboSer ver s in a cluster must be running the same RQLSer vi ce (although
the port may be different).

Assuming we have started a RoboSer ver with the SSL RQLSer vi ce on port 50043, like this
RoboServer -service ssl:50043

We can use the following code:

RoboServer server = new RoboServer ("l ocal host", 50043);

bool ean ssl = true;

Cluster cluster = new Cluster("MCuster", new RoboServer[] {server}, ssl);
Request . Regi sterCl uster(cl uster);

All we need to do is to create the cluster as an SSL cluster and specify the SSL port used by each
RoboSer ver . Now all communication between RoboSer ver and the API will be encrypted.

In addition to data encryption, SSL offers the possibility to verify the identity the remote party. This type of
verification is very important on the Internet, as rouge Web sites could otherwise pretend to be someone

they are not. Most often your API client and RoboSer ver s will be on the same local network, so you rarely
need to verify the identity of the other party, but the API supports this feature should it become necessary.

Check here to find out how to compile and run the included SSL example.

Kofax Kapow Developer's Guide

Repository Integration

In the Management Console you also specify cluster of RoboSer ver s, these are used to execute
scheduled robots, as well as robots executed as REST services. The API allowed you to use
the Reposi t oryC i ent to obtain cluster information from Management Console, check the
Reposi t oryd i ent documentation for details.
Repository Integration
usi ng System
usi ng Com KapowTech. RoboSui te. Api ;
usi ng Com KapowTech. RoboSui t e. Api . Const ruct ;
usi ng Com KapowTech. RoboSui t e. Api . Reposi t ory. Engi ne;
namespace Exanpl es
public class Repositorylntegration
public static void Main(String[] args)
string user Nanme "adm n";
string password "adm n";

RepositoryCdient client = new Repositoryd ient
("http://1ocal host:50080", userNanme, password);

Request . Regi sterd uster(client, "Production");

var request = new Request ("Library:/Tutorial s/ NewsMagazi ne. robot");
var result = request.Execute("Production");

Consol e. WitelLine(result.ToString());

}

The above example shows how to create a Reposi t oryC i ent which connects to a Management
Console deployed on localhost port 50080.

If the Management Console requires authentication you will need to pass a username and password,
otherwise you may pass null for both. When we register the Reposi t oryd i ent we specify the name
of a cluster which exists on the Management Console, this will then query the Management Console
to get a list of RoboSer ver s configured for this cluster, and check every 2 minutes to see if the cluster
configuration has been updated on the Management Console

This integration allows you to create a cluster on Management Console that you can change dynamically
using the Management Console user interface. When you use a Management Console cluster with the
API usage should be exclusive, and you should not use it for scheduling robot, as this would break the
two client rule.

Executor Logger

When you execute a request, the execute method will throw an exception if a robot generates an error.
Other types of errors and warnings are reported through the Execut or Logger interface. In the previous
examples, we have not provided any Execut i onLogger when executing robots, which means we get the
default implementation that will write to system out. Let's see how the Execut or Logger will report if one of
our RoboSer ver s goes offline.

The example configures a cluster with a RoboSer ver which is not online.

53

ExecutorLogger, offline server example:

RoboServer rs = new RoboServer ("l ocal host", 50000);
Cluster cluster = new C uster("nanme", new RoboServer[]{rs}, false);
Request . Regi sterCl uster(cluster);

If you run this example if should print the following to the console.

ExecutorLogger, offline RoboServer console output:

RoboSer ver [Host =l ocal host, Port=50000]"' went offli ne.

Often you don't want to have your application writing directly to Syst em out , in that case you can provide
a different | Execut or Logger implementation, you can do so when registering the cluster, like this

Use DebugExecutorLogger:

Request . Regi ster Cl ust er (cl uster, new DebugExecut or Logger ());

This example uses the DebugExecut or Logger () which will also print to Syst em out , but only if the API
debugging is enabled. Alternative you can provide your own implementation of the Execut or Logger, to
control how error messages should be handled.

Under the Hood

This section will explain what is going on under the hood when you register a cluster and execute a
Request.

When you register a Cluster with the Request, a Request Execut or is created behind the scene. This
Request Execut or is stored in a Map using the cluster name as key. When a request is executed the
provided cluster name is used to find the associated Request Execut or and execute the request.

Lets look at a short example.

Normal Execution

public static void Main(String[] args)
RoboServer server = new RoboServer ("l ocal host", 50000);
Cluster cluster = new Custer("M/Custer", new RoboServer[]{ server}, false);
Request . Regi ster O uster (cl uster);
var request = new Request ("Library:/Tutorial s/ NewsMagazi ne. robot");
request. Robot Li brary = new Def aul t Robot Li brary();

var result = request.Execute("M/d uster");
Consol e. WitelLine(result);

Now lets write the same example by using the hi ddenRequest Execut or directly.
Under the Hood Execution

public static void Main(String[] args)

RoboServer server = new RoboServer ("l ocal host", 50000);
Cluster cluster = new Custer("M/Custer", new RoboServer[]{ server}, false);

Kofax Kapow Developer's Guide

Request Execut or execut or = new Request Execut or (cl uster);

var request = new Request ("Library:/Tutorial s/ NewsMagazi ne. robot");
request. Robot Li brary = new Def aul t Robot Li brary();

var result = executor.Execute(request);

Consol e. WitelLine(result);

}

The reason the Request Execut or is hidden by default, is so you don't have to keep track of it. You may
only create one Request Execut or per cluster, so if you use it directly you need to store a reference to it
throughout your application. Using Request . Regi st er Cl ust er (cl ust er) means that you can blissfully
ignore the Request Execut or and lifecycle rules.

The Request Execut or contains the necessary state and logic which provides the load balancing and
failover features. Using the Request Execut or directly also offers a few extra features, which we will look
at.

Request Executor Features

When the Request Execut or is not connected to a repository, you can dynamically add remove
RoboSer ver s, by calling AddRoboSer ver (..) and RenoveRoboSer ver (..). These methods modifies the
distribution list used inside the Request Execut or.

Request Execut or . Tot al Avai | abl eSl ot s property contains the number of unused execution slots
across all RoboSer ver s in the internal distribution list.

By using these methods you can dynamically add RoboSer ver s to your Request Execut or once the
number of available execution slots becomes low.

When you create the Request Execut or you may optionally provide an | Rgl Engi neFact ory. The

I Rgl Engi neFact ory allows you to customize which RQLPr ot ocol is used when connecting to a
RoboSer ver . This is only needed under very rare circumstances, for instance if you want use a client
certificate to increase security, check API Client Certificates for details.

Repository API

The Repository API allows you to query the Management Console's Repository to get a list of projects,
robots and the input required to call a robot. It also allows you to programmatically deploy robots, types
and resource files.

Repository Client

Communication with the repository is achieved through the Reposi t oryC i ent found in the namespace
Com KapowTech. RoboSui t e. Api . Reposi tory. Engi ne
Let's look at an example .

Get Projects from Repository

string User Nane "adm n";
string Password "adm n1234";
RepositoryCient client = new RepositoryCient("http://local host: 50080/", UserName, Password);

Kofax Kapow Developer's Guide

Project[] projects = client.GetProjects();
foreach(Project p in projects) {

Consol e. Wi teLi ne(p);

}

Here we see a Reposi t oryd i ent configured to connect to Management Console's repository on

http://1 ocal host: 50080/ with a username and password. If the Management Console is not password

protected, you must supply null for user name and password.

Once the Reposi t oryd i ent is created, we use the Get Pr oj ect s() method to query the
repository for a list of projects. Notice that when calling any of the Reposi t oryd i ent methods, a
Reposi t oryd i ent Except i on will be thrown if an error occurs.

The Reposi t oryd i ent has the following eleven methods

Methods of the RepositoryClient:

Method signature

Description

voi d Del et eResource(string projectNane,
string resourceNanme, bool ean silent

Deletes a resource from a project. The r esour ceNane
argument uses the full path of the resource.

voi d Del et eRobot (string project Nane,
string robot Nane, bool ean silent)

Deletes a robot from a project. The r obot Nane
argument uses the full path of the robot.

voi d Del et eType(string projectNane,
typeNane, bool ean sil ent)

string

Deletes a type from a project. The t ypeNanme argument
uses the full path of the type.

voi d Del et eSni ppet (string projectNane,
string sni ppet Nane, bool ean silent)

Deletes a snippet from a project. The sni ppet Nane
argument uses the full path of the snippet.

voi d Depl oyLi brary(string projectNane,
EnbeddedFi | eBasedRobot Li brary |ibrary,
bool ean faillfExists)

Deploys a library to the server. Robots, types and
resources will be overridden unless fai | | f Exi sts is
true.

voi d Depl oyResource(string projectNane,
string resourceName, byte[] resourceBytes,
bool ean faillfExists)

Deploys a resource to a project. If a resource with the
given name already exist it can be overridden by setting
faillfExists tofalse. The r esour ceNane argument
uses the full path of the resource.

voi d Depl oyRobot (string projectNane,
string robot Nane, byte[] robotBytes,
bool ean faillfExists)

Deploys a robot to a project. If a robot with the given
name already exist it can be overridden by setting
faillfExists tofalse. The r obot Nane argument
uses the full path of the robot.

voi d Depl oyType(string projectNane,
typeNane, byte[] typeBytes, bool ean
faillfExists)

string

Deploys a type to a project. If a type with the given
name already exist it can be overridden by setting
faillfExists tofalse. Thet ypeNanme argument uses
the full path of the resource.

voi d Depl oySni ppet (string project Nane,
string sni ppet Name, byte[] snippetBytes,
bool ean faillfExists)

Deploys a snippet to a project. If a snippet with the
given name already exist it can be overridden by setting
faillfExists tofalse. The sni ppet Nanme argument
uses the full path of the snippet.

Project[] GetProjects()

Returns the projects that exist in this repository

Cluster[] GetRoboServerd usters()

Returns a list of clusters and online(valid) RoboServers
that are registered with the Management Console
running the repository.

56

Kofax Kapow Developer's Guide

Method signature

Description

Cluster[] GetRoboServerd usters(bool ean
onl i neRoboSer ver)

Returns a list of clusters and Roboservers that are
registered with the Management Console. Use
onlineRoboServer flag to indicate if the clusters should
include only the online or all of the RoboServers.

Cl ust er AddRoboServer (String cl usterNane,
int portNunber, String host)

Adds a new RoboServer to a cluster.

Robot [] Get Robot sl nProject(String
pr oj ect Nane)

Returns the full paths of robots available in the project.

Robot Si gnat ure Get Robot Si gnature(String
proj ect Name, String robot Nane)

Returns the robot signature with the full path of the robot,
as well as the input variables required to execute this
robot and a list of the types it may return or store.

Reposi t or yFol der
Get Proj ectInventory(String project Nane)

Returns the entire tree of folders and files from the
repository.

Reposi t or yFol der Get Fol der | nventory(String
project Nane, String fol derPath)

Returns the folders and files of the sub folder in the
specified project from the repository.

Reposi toryFol der GetFil el nventory(String
projectName, String fol derPath, String
fileName, RepositoryFile.Type fil eType)

Gets the file and the referenced files from the
management console. Remark, the file inventory is
wrapped in a RepositoryFolder, to get references.

Voi d Del eteFil e(RepositoryFile file, bool

silent)

Deletes the specified file from the repository.

Dat e Get CurrentDate()

Returns current date and time of the Management
Console.

byte[] GetBytes(RepositoryFile file)

Returns the size in bytes of the specified file in the
repository.

Conput eChecksun(byte[] bytes)

Returns the checksum of the specified file to verify data
integrity.

voi d Updat eFi |l e(RepositoryFile file,
byte[] bytes)

Updates the specified file in the repository with new
bytes.

voi d MoveFi | e(RepositoryFile sourceFile,
String dest Fol der Pat h)

Moves the specified file from the repository to a folder
specified in dest Fol der Pat h.

voi d RenameRobot (RepositoryFile robotFile,
String newNane)

Renames the specified robot file.

voi d Del et eFol der (String projectNane,
String fol derPat h)

Deletes the specified folder in the repository.

voi d Del et eRoboServer (String cl usterNane,
RoboSer ver roboServer)

Deletes a RoboServer.

57

Kofax Kapow Developer's Guide

Method signature Description

Map<String, String> getlnfo() Returns information about the Management Console and
the Repository API

The method returns a mapping of the following:

"application" to the version of the Management
Console containing major, minor and dot version, for
example, 10. 0. 0

= "repository” to the ID of the latest DTD used
by the Repository API, for example, / / Kapow
Technol ogi es// DTD Repository 1.5//EN

"rgl" to the ID of the latest DTD used by the Robot
Query Language API, for example, / / Kapow
Technol ogi es// DTD RoboSuite Robot Query
Language 1.13//EN

Note The full path is relative to your project folder.

Check the .Net documentation for details. The .Net documentation is located inside you Kapow
installation at / API / r obosui t e- dot net - api / docs/ RoboSui te . NET API.chm

If authentication is enabled on the repository, the request may be declined if the credentials given doesn't
have sufficient access.

The repository is accessed via http. When using the .Net version of the Repository API, any proxy servers
configured for Internet Explorer will be used by the Repository API.

Deployment via Repository Client

The following example shows how to deploy a robot and a type from the local file system using the
Reposi toryd i ent
Deploying to Repository
string user = "test";
string password = "test1234";
RepositoryCient client = new RepositoryClient("http://local host:50080", user,
password) ;

byte[] robotBytes = File.ReadAl | Bytes("c:\\ M/Robot s\\Library\\Test.robot");
byte[] typeBytes = File. ReadAl | Bytes("c:\\ M/Robot s\\Li brary\\ Test.type");

/1l we assume that no one has del eted the Default project
client. depl oyRobot ("Default project", "Test.robot", robotBytes, true);
client.depl oyType("Default project", "Test.type", typeBytes, true);

Repository API as Rest

The repository can also be accessed via restful services.

Kofax Kapow Developer's Guide

Examples
The Kapow installation contains six additional API code examples, these examples are found in API
\ robosui t e- dot net - api \ exanpl e.

After completing these steps, both the server and client will be configured to use SSL Running
RunSsl| Robot . exe can be used to verify the configuration.

Compiling & Running the Examples

To compile the examples run the bui | d. bat from a command prompt. This will cause six .exe files to be
produced, which can be run directly.

The .exe files are relying on the r obosui t e- dot net - api . dl | and the log4net.dll both of which are
located in the examples directory. Both files are identical copies of the ones located in the bin folder and
are copied in here to make it easier to run the examples.

Each example program will print a small usage text when run without any arguments.

C# Compiler Issues

The bui | d. bat file assumes that the C# compiler is available in the path.

.NET Framework 4.0

The APl and accompanying log4net is build targeting the .net framework 4.0 client profile. For details on
the .net framework 4.0 client profile seehtt p: // medn. mi crosoft. comf en-us/|ibrary/cc656912. aspx

SSL Example

To run the SSL example RunSsl Robot . exe the RoboSer ver has to be configured to use ssl and the
certificate has to be imported on the client machine. This guide will show you how to configure ssl using a
self-signed certificate on a windows PC running a local RoboSer ver .

Configure the RoboServer

On the RoboSer ver start the Set t i ngs application located in Start -> Al Prograns -> Kapow
In the Set t i ngs application goto the certificates tab

Click change and select the file API\ r obosui t e- dot net - api \ exanpl e\ server. pf x

When prompted for a password type 123.

hoN-=

Configure the API Client

Run the command mmt. exe
On the Console menu, click Add/Remove Snap-in

3. Under Snap-in, double-click Certificates, and select to manage certificates for the local computer
and click Finish

59

Kofax Kapow Developer's Guide

4. With the certificates snap-in loaded expand the node Certificates -> Trusted root Certification
Authorities and right click the Certificates node and click the menu item All tasks -> Import

5. This will start the Certificate Import Wizard. When prompted to pick the certificate file, browse to API
\r obosui t e- dot net - api \ exanpl e\ ser ver. pub. cer and complete the import.

60

Chapter 3

Kapow Control Protocol

Kapow Control Protocol or KCP is an execution protocol for executing Robots over Java Message Service
(JMS), using Google Protocol Buffers (Protobuf).

The KCP protocol defines a set of messages that enable you to communicate with a RoboServer. The
following messages are defined.

Message Direction Notes Queue/Topic
Message both A container, wrapping all All
the following messages.
ExecuteRobot sending Includes robot url for Execute
RS to get robot from the
repository.
StopRobot sending Sent to interrupt a running | Control
robot.
RobotEvent receiving (START_REQUESTED Result
STARTED,

STOP_REQUESTED,
STOPPED, FAILED;
ENDED)

ServerMessage receiving Either info or error from the | Result
server regarding a run.

RobotResult receiving A Robot Result is send Result
every time a return value
step is executed in the
robot.

RobotRunStatus receiving Summary of run including | Result
the number of returned
RobotResult messages.

KCP communicates over three so called JMS Destinations listed in the following table.

Name Destination type Description

Execute Queue Messages to a RoboServer
Result Queue Information from RoboServers
Control Topic Broadcast to all RoboServers

The following is an example of a normal KCP life cycle.

1. An ExecuteRobot message is sent. When the message is picked up by a RoboServer, it sends a
RobotEvent (START_REQUESTED) that informs you which RoboServer is handling the execution.

Kofax Kapow Developer's Guide

2. START_REQUESTED is followed by a RobotEvent (STARTED). During the execution, the robot
might send multiple RobotResults that you can pick up from the result queue.

3. When the robot stops, it sends a RobotEvent (ENDED) and a RobotRunStatus that informs you
about how many results were returned.

Build a JMS Client

To use KCP you must set up the following components.
= Kapow JMS client that includes the following components:
= Management Console
» RoboServer
= JMS broker
= A JMS client api In your language (see http://activemq.apache.org for more information)
= The protocol definition file (kcp. pr ot 0).

= The Protocol Buffers compiler version 3 (proto3) that you can download from https://github.com/google/
protobuf/releases (see https://developers.google.com for more information).

= The latest version of the Pr ot obuf . j ar file.

In the following tutorials we use Java, and ActiveMQ Client to connect to the JMS broker.
= KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message

= KCP Tutorial 2: Consume Specific Results

= KCP Tutorial 3: Stop Robot Execution

KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message

In this tutorial we will compile KCP, connect to a JMS broker, and send a message. The resulting code
can be found in the Tut ori al 1. j ava file.

Prerequisites

= Install Protobuf compiler.

= Use a programming language that supports Protobuf and JMS. In this tutorial we use Java.
= Set up the language dependent Protobuf library. In this tutorial: Java pr ot obuf . j ar.

= Set up and start ActiveMQ JMS message broker.

Step 1. Create the language dependent KCP definition
From the command line run the compiler with the following parameters:

protoc --java_out=[DestinationFol der] kcp. proto

The above command creates com kapowt ech. kcp Java package structure in the destination folder with a
single file called Kcp. j ava. Do not change this file, it is simply a helper to create the Protobuf objects. The
package must be included in your tutorial project.

http://activemq.apache.org
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://developers.google.com

Step 2. Connect to the broker

A broker can be configured to connect in many different ways, such as using credentials and certificates.
In this example we assume a standard configuration of the broker, where anonymous access is allowed.
To connect we only need a broker URI.

public void run() {

try {

// Create a ConnectionFactory

Act i veMQConnect i onFact ory

connecti onFactory = new

Act i veMQConnect i onFact or y(BROKER_URI) #

// Create a Connection

Connecti on connection = connectionFactory. createConnection()#
connection.start()#

//Create a Session

Sessi on sessi on = connecti on. creat eSessi on(fal se, Sessi on. AUTO_ ACKNOALEDGE) #

The code above connects to the broker and creates a session.

Step 3. Connect to the execution queue
On this step we connect to a queue to send a message. The queue name must include the same
namespace and cluster as the RoboServer. The execution queue name consists of the following.

[NAMESPACE] . KCP. [CLUSTER_NAME] . Execut e
For example, Kapow. KCP. Pr oduct i on. Execut e.

private final String NAVESPACE = "Kapow' # // Mist match the nanespace used by the RoboServer
private final String ENCODI NG = "KCP" # // Mist be KCP

private final String CLUSTER = "Production" # // Mst match the cluster used by the RoboServer
private final String EXECUTE = "Execute" #

private final String EXECUTE_QUEUE = NAMESPACE + "." + ENCODING + "." + CLUSTER + "." +
EXECUTE #

Hdeat e the destination (Topic or Queue)
Destination destination = session. creat eQueue(EXECUTE_QUEUE) #

The code above creates a queue if it does not exist.
When the queue is created, we add a producer and send the first message.

|/ Create a MessageProducer fromthe Session to the Topic or Queue

MessagePr oducer producer = session. createProducer(destination)#

producer. set Del i ver yMode(Del i ver yMode. PERS| STENT) #

//Create a message

Kcp. Message kcpMessage = creat eExecut eRobot Message()# //we will get to this later
Byt esMessage j nsMessage = session. creat eByt esMessage() #

j msMessage. wi t eByt es(kcpMessage. t oByteArray())#

j msMessage. set StringProperty("version" , "1")#

//Tell the producer to send the jns nessage

producer. send(j msMessage) #

When sending messages to Kapow using JMS, you must set a version property on the JMS message.
The version is the version of the KCP message format and is currently 1.

j msMessage. set Stri ngProperty("version", "1")#

Step 4. Create a KCP execute message

To create an Execut eRobot message, use Execut eRobot and Message classes generated from

kcp. prot o on Step 1. The message requires a robot url and a unique execution id. The URL must refer to
the robot in a Management Console repository as in the following example.

http://[user]:[pass] @host]:[port]/[MNane] ?proj ect =[proj ect nane] & obot =[r obot nane]

Code example

private final String REPCSI TORY = "http://adm n: adm n@ ocal host : 8080/ Managenent Consol e" #

private final String PROJECT = "Default project" #

private final String ROBOT = "M/Tutori al Robot. robot" #

private String executionld = UU D. randomJUl D().toString()# // Mst be unique across all clusters
and tinme

/] Create a Robot Executi on nessage wapped in a Message structure for sending.
private Kcp. Message creat eExecut eRobot Message() {

Kcp. Execut eRobot execut eRobot = Kcp. Execut eRobot. newBui | der ()

. set Robot Ur| (REPCSI TORY + "?project=" + PROJECT + "&r obot=" + ROBOT)
. set Executi onl d(executionld)

/'l .setlnput(createl nputCbjects()) //we will get to this in next step
cbui 1 d() #

return Kcp. Message. newBui | der ()

. set Execut eRobot (execut eRobot)

Cbui 1 d() #

}

Refer to the code example for variables, boilerplate and context.

Step 5. Adding input objects

If you want to run robots using inputObijects, they need to be added to the KCP. In the following example
we create a MyTutorialType named myTutorialObject with three attributes as an input object.

[**

*Create the test input object nyTutorial Cbject of the type MyTutorial Type

* @eturn an i nput object

*/

private Kcp. Structure createl nput oj ects() {

//create a map of 3 attributes for the nyTutorial Obj ect

Map<String, Kcp.Value> attributes = new HashMap<>()#

attributes. put("nmylnteger" , kcp.Value. newBuil der().setlnteger(42). build(

attributes.put("nyString" , Kcp.Value. newBuilder().setString("").build())

attributes.put("myDate" , Kcp.Val ue. newBuil der (). set Ti mest anp(Syst em
currentTineM I lis()).build())#

//wrapping of attributes in structure

Kecp. Structure nyTutori al Obj ect Structure = Kcp. Structure. newBui | der ()

.put Al | El ement s(attri butes)

Cbui 1 d() #

//Create a map of all the input objects in this case just a single object

Map<String, Kcp.Val ue> input Obj ect s= new HashMap<>() #

//add nyTutorial Object to the input object map.

i nput Obj ects. put("nyTutorial Object" ,

Kcp. Val ue. newBui |l der (). set Structure(myTutorial ObjectStructure).build())#

Return Kcp. Structure. newBui |l der ()

. put Al | El enent s(i nput Obj ect s)

.bui 1 d() #

}

)) #
#

After input objects are specified, we need to go back to the cr eat eExecut eRobot Message and add the
input as follows.

private Kcp. Message creat eExecut eRobot Message() {

Execut eRobot execut eRobot = Execut eRobot. newBui | der ()

. set Robot Url (REPOSI TORY + "?project=" + P RQJECT + "&robot=" + ROBOT)
. set Execut i onl d(executionld)

. set | nput (creat eMyl nput s())

cbui 1 d() #

return Kcp. Message. newBui |l der ()

. set Execut eRobot (execut eRobot)

.bui 1 d() #

}

Now you can send execute messages that start robot runs. The next step is to retrieve the robot results.

Step 6: Receiving robot results

A robot run can return Robot Resul t s, Robot RunSt at us and Robot Event messages during its execution.
To receive messages we need to set up a consumer on the result queue. The consumer picks messages
off the queue as they arrive, and delegate further work. The queue is named the same way as the
execute queue.

[NAMESPACE] . KCP. [CLUSTER_NAME] . Resul t

For example, Kapow. KCP. Producti on. Resul t .

In this example the consumer runs in a separate thread and keeps consuming until st opConsuner () is
called. This specific consumer consumes all messages on the result queue. You can use this if you do not
need to hand the results back to the specific executor. In KCP Tutorial 2: Consume Specific Results we
set up an execution ID for specific consumer.

In the following code we set up a connection and a consumer for the result queue.

public void run() {

try {

// Create a ConnectionFactory

Act i veMQConnect i onFactory connecti onFactory = new

Act i veMQXConnect i onFact ory(BROKER URlI)#

[/ Create a Connection

Connecti on connecti on = connecti onFactory. createConnection()#
connection.start()#

connecti on. set Excepti onLi stener(this)#

//Create a Session

Sessi on session = connection. createSession(false , Session. AUTO ACKNOALEDGE) #
[/ Create the destination

Destination destination = session.createQueue(RESULT_QUEUE) #

|/ Create a MessageConsunmer fromthe Session to the Topic or Queue
MessageConsuner consunmer = session. creat eConsuner (destination)#

Then we add the main consume loop where we consume the messages and parse them depending on
the type of a message.

while (consune) {

/'l Wait for a nessage for 1 second

Message nessage = consuner.receive(1000)#

if (nessage instanceof BytesMessage) {

Byt esMessage m = (Byt esMessage) nessage#

byte [] bytes = new byte [(int) m getBodyLength()]#

m r eadByt es(byt es) #

Kcp. Message kcpMessage = Kcp. Message. parseFron{ byt es) #

System out.print("fromsender: " + kcpMessage.getSenderld() + ": ")#
switch (kcpMessage. get Ki ndCase()) {

case ROBOT_EVENT:

System out.println("RobotEvent: " + kcpMessage. get Robot Event (). get Type(). nanme())#
break #

case ROBOT_RESULT:

handl eResul t (kcpMessage. get Robot Resul t ()) #

break #

case SERVER MESSAGE:

System out.println("Server Message: " +kcpMessage. get Server Message(). get Message())#
break #

case ROBOT_RUN_STATUS:

System out.println("Robot RunStatus Message: returned objects:

+kcpMessage. get Robot RunSt at us() . get Lat est Resul t | ndex()) #

break #

defaul t :

System out.println("unknown Message: " +kcpMessage. get Ki ndCase(). nane())#
}

}

}

Kofax Kapow Developer's Guide

The final handling of the returned data is simply unpacking the KCP object. In this example we just print
the result to the output stream.
/ * %

* prints out a given result

* @aramresult

*/

private void handl eResul t (Kcp. Robot Result resul t){

Kep. Structure output =result.getQutput()#

System out.println("Result: object type: " + output.getTypeNane() + " index: " +
result.getlndex())#

for (String key: output.getEl ements().keySet()) {

Kcp. Val ue val ue = out put. get El enent s(). get (key) #

System out.print(" \t " +value)#

}

}
All the above examples together give you a code that can build an input object, execute a robot, and get
returned events and results from the robot.

KCP Tutorial 2: Consume Specific Results

This is a modification of KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message
and shows a different approach to consumption of messages. The source code can be found in
Tutorial 2.java.

If you want to extract messages related to your execution, instead of a global consumer use message
selectors. Each message sent to the result queue has a message property with an execution ID. You can
setup a consumer for a specific execution ID with a message selector like the following.

sessi on. cr eat eConsuner (desti nati on, "executionld=""+_executionld+"'")#

Note More complex selectors can be created using the SQL92 condition format.

H'Create the destination

Destination destination = session.createQueue(RESULT _QUEUE)#

/Il Create a MessageConsumer fromthe Session to the Topic or Queue

MessageConsuner consunmer = session. creat eConsuner (destination, "executionld ='" + _executionld +
oY

while (consune) {

With the message selector, only messages related to the specific execut i onl d are handled by the
consumer.

In KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message we set up a global
consumer. Now we move the initialization of the consumer into the run method of the producer and pass
the execut i onl d to the consumer as follows.

publ ic static class Tutorial Producer inplenents Runnabl e {

public void run() {

//Start the consuner,

Consuner consumer = new Consuner(executionld)#
t hread(consuner, "Consumer thread")#

Finally we stop the consumer when we receive a Robot Event . ENDED message.

Kofax Kapow Developer's Guide

switch (kcpMessage. get Ki ndCase()){

case ROBOT_EVENT:

System out.println("RobotEvent: " + kcpMessage. get Robot Event (). get Type().nane())#
if (kcpMessage. get Robot Event (). get Type() == Kcp. Robot Event. Type. ENDED) {

st opConsuner () #

}
break #

Running the code from KCP Tutorial 2: Consume Specific Results starts a producer that creates a
consumer for your run. The consumer consumes all messages related to your run and closes down when
the robot stops executing.

KCP Tutorial 3: Stop Robot Execution

Stopping a robot is a little different compared to the JMS communication in Tutorial 1 and Tutorial 2,
because the St opRobot message is broadcasted to all RoboServers over a JMS Topic.

To connect to a topic is similar to connecting to a queue. The only difference is that we call the
sessi on. creat eTopi c(name) instead of sessi on. cr eat eQueue() as in the following example.

public void run() {

try {

/Il Create a ConnectionFactory

Acti veMQConnect i onFact ory connecti onFactory = new Acti veMQConnecti onFactory(BROKER _URI)#
I/l Create a Connection

Connecti on connection = connectionFactory. createConnection()#
connection.start()#

/Il Create a Session

Sessi on session = connection. createSession(false , Session. AUTO ACKNOALEDGE) #
/1l Create the destination

Destination destination = session.createTopic(TOPIC)#

/] Create a MessageProducer fromthe Session to the Topic or Queue

MessagePr oducer producer = session. createProducer(destination)#

producer. set Del i ver yMode(Del i ver yMode. PERSI| STENT) #

/] Create a nessages

Kcp. Message kcpMessage = creat eSt opRobot Message() #

The rest of the connection setup is the same as for execute message.

When building a Stop Message all we need is the executi onl d as follows.

private Kcp. Message creat eSt opRobot Message() {

Kcp. St opRobot st opRobot = Kcp. St opRobot . newBui | der () . set Executi onl d(executionld).build()#
return Kcp. Message. newBui |l der ()

. set St opRobot (st opRobot)

cbui 1 d() #

}

When a RoboServer receives a Stop message, it stops the robot after the current step is executed and
sends back a Robot Event over the Result queue.

67

	Title Page
	Table of Contents
	Introduction to Programming with Robots
	Getting Help for Kofax Products

	Java Programmer's Guide
	Java Basics
	First Example
	Robot Input
	Attribute Types
	Execution Parameters
	Robot Libraries

	Java Advanced
	Load Distribution and Failover
	Two Client Rule

	Executor Logger
	Data Streaming
	SSL
	Parallel Execution
	Repository Integration

	Under the Hood
	RequestExecutor Features
	Web Applications

	API Debugging
	Repository API
	Dependencies
	Repository Client
	Deployment via Repository Client
	Repository Rest API

	.NET Programmer's Guide
	.Net Basics
	First Example
	Robot Input
	Attribute Types
	Execution Parameters
	Robot Libraries

	.NET Advanced
	Load Distribution
	Two Client Rule

	Data Streaming
	SSL
	Repository Integration
	Executor Logger

	Under the Hood
	Request Executor Features

	Repository API
	Repository Client
	Deployment via Repository Client
	Repository API as Rest

	Examples
	Compiling & Running the Examples
	C# Compiler Issues
	.NET Framework 4.0
	SSL Example
	Configure the RoboServer
	Configure the API Client

	Kapow Control Protocol
	Build a JMS Client
	KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message
	KCP Tutorial 2: Consume Specific Results
	KCP Tutorial 3: Stop Robot Execution

