
Kofax Kapow
Developer's Guide
Version: 10.0.0

Date: 2016-09-20

© 2007-2016 Kofax, Inc., 15211 Laguna Canyon Road, Irvine, California 92618, U.S.A. All rights reserved.
Use is subject to license terms.

Copyright (C) 2004- 2016 Kapow Technologies, Inc. All rights reserved. Use is subject to license terms.
Unauthorized duplication or distribution is strictly prohibited.

Third-party software is copyrighted and licensed from Kofax’s suppliers. For information on third-
party software included in this product, see documentation/thirdparty.html located in your Kapow
installation folder.

This product is protected by U.S. Patent No. 6,370,277.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF KOFAX,
INC. USE, DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS
WRITTEN PERMISSION OF KOFAX, INC.

Kofax, the Kofax logo, and the Kofax product names stated herein are trademarks or registered
trademarks of Kofax, Inc. in the U.S. and other countries. All other trademarks are the trademarks or
registered trademarks of their respective owners.

U.S. Government Rights Commercial software. Government users are subject to the Kofax, Inc. standard
license agreement and applicable provisions of the FAR and its supplements.

You agree that you do not intend to and will not, directly or indirectly, export or transmit the Software or
related documentation and technical data to any country to which such export or transmission is restricted
by any applicable U.S. regulation or statute, without the prior written consent, if required, of the Bureau
of Export Administration of the U.S. Department of Commerce, or such other governmental entity as may
have jurisdiction over such export or transmission. You represent and warrant that you are not located in,
under the control of, or a national or resident of any such country.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

3

Table of Contents

Legal Notice ... 2
Introduction to Programming with Robots ... 5

Getting Help for Kofax Products ... 5
Java Programmer's Guide ...7

Java Basics ..7
First Example ...8
Robot Input .. 10
Attribute Types ...11
Execution Parameters ... 13
Robot Libraries .. 14

Java Advanced .. 16
Load Distribution and Failover .. 16
Executor Logger .. 17
Data Streaming ..18
SSL .. 21
Parallel Execution ..22
Repository Integration ... 23

Under the Hood ... 24
RequestExecutor Features ..25
Web Applications ...25

API Debugging ...26
Repository API ... 27

Dependencies .. 27
Repository Client ... 27
Deployment via Repository Client ...29
Repository Rest API ..30

.NET Programmer's Guide .. 38
.Net Basics ...38

First Example ...39
Robot Input .. 40
Attribute Types ...41
Execution Parameters ... 43
Robot Libraries .. 45

Kofax Kapow Developer's Guide

4

.NET Advanced ..47
Load Distribution ..47
Data Streaming ..48
SSL .. 52
Repository Integration ... 53
Executor Logger .. 53

Under the Hood ... 54
Request Executor Features ...55

Repository API ... 55
Repository Client ... 55
Deployment via Repository Client ...58
Repository API as Rest ...58

Examples ..59
Compiling & Running the Examples ... 59
C# Compiler Issues ...59
.NET Framework 4.0 ... 59
SSL Example ...59
Configure the RoboServer ...59
Configure the API Client ... 59

Kapow Control Protocol ..61
Build a JMS Client ...62

KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message .. 62
KCP Tutorial 2: Consume Specific Results .. 66
KCP Tutorial 3: Stop Robot Execution ... 67

5

Introduction to Programming with Robots

Robots are executed on RoboServer through an API (Java or .Net). You may use the API directly in your
own application or indirectly when you execute robots using the Management Console.

This part of the documentation will look at the direct execution of Robot using the Java and .Net APIs

▪ The Java Programmer's Guide describes the API that can be used in Java programs.
▪ The .NET Programmer's Guide describes the API to use in .NET applications, including C# programs.

API reference documentation is available for Java, .NET and can be found under the API folder in your
Kapow installation folder, for example C:\Program Files\Kapow 10.0.0\API.

Getting Help for Kofax Products

Kofax regularly updates the Kofax Support site with the latest information about Kofax products.

To access some resources, you must have a valid Support Agreement with an authorized Kofax Reseller/
Partner or with Kofax directly.

Use the tools that Kofax provides for researching and identifying issues. For example, use the Kofax
Support site to search for answers about messages, keywords, and product issues. To access the Kofax
Support page, go to www.kofax.com/support.

The Kofax Support page provides:
▪ Product information and release news

Click a product family, select a product, and select a version number.
▪ Downloadable product documentation

Click a product family, select a product, and click Documentation.
▪ Access to product knowledge bases

Click Knowledge Base.
▪ Access to the Kofax Customer Portal (for eligible customers)

Click Account Management and log in.
To optimize your use of the portal, go to the Kofax Customer Portal login page and click the link to
open the Guide to the Kofax Support Portal. This guide describes how to access the support site, what
to do before contacting the support team, how to open a new case or view an open case, and what
information to collect before opening a case.

▪ Access to support tools
Click Tools and select the tool to use.

▪ Information about the support commitment for Kofax products
Click Support Details and select Kofax Support Commitment.

http://www.kofax.com/support

Kofax Kapow Developer's Guide

6

Use these tools to find answers to questions that you have, to learn about new functionality, and to
research possible solutions to current issues.

7

Chapter 1

Java Programmer's Guide

This guide describes how to execute Robots using the Kapow Java API. The guide assumes that you
have completed the Design Studio tutorials and know how to write simple Robots and that you are familiar
with the Java programming language.

The programmer's guide has been completely rewritten for version 8.3, as large portions of the API has
been deprecated, and a new execution API has been created. The API is still backwards compatible, but
you should familiarize yourself with the new API and consider rewriting existing application to use the new
API, as the deprecated classes will be removed in future releases.

The old RobotExecutor has been deprecated because of the following reasons

▪ Robots would continue to execute on RoboServer even after an RQLException was thrown by the API.
▪ Robots would continue to execute even if RoboServer lost connection to the client, resulting in log

errors for every Return Value executed.
▪ The distribution policies didn't look at server capacity when distributing requests.
▪ It was cumbersome to implement object streaming, because there were many hidden pitfalls when

implementing a custom RQLHandler

You can still find the old Java programmer's guide, at http://help.kapowtech.com/8.2/topic/doc/
java/Top.html

Note The printStackTrace method is deprecated in Kapow version 9.6 and later.

Details about specific classes can be found in the JavaDoc.

Java Basics

Robots run by the Management Console are executed using the Java API. The Java API allows you to
send requests to a RoboServer that instructs it to execute a particular robot. This is a classic client-server
setup in which Management Console acts as the client and RoboServer as the server.

By using the API, any Java based application can become a client to RoboServer. In addition to running
robots that store data in a database, you can also have the robots return data directly back to the client
application. Here are some examples:

▪ Use multiple robots to do a federated search, which aggregates results from multiple sources in real
time.

▪ Run a robot in response to an event on your application back-end. For instance run a robot when a
new user signs up, to create accounts on web-based systems not integrated directly into your back-
end.

Kofax Kapow Developer's Guide

8

The basic section of this guide will introduce the core classes, and how to use them for executing robots.
We will also describe how to provide input to robots, and control their execution on RoboServer.

The Java API is a jar file, and it is located in /API/robosuite-java-api/lib/robosuite-api.jar inside the Kapow
installation folder, see important folders for details. All examples in this guide can also be found in /API/
robosuite-java-api/examples. Located next to the Java API are 5 additional jar files which comprise
the external dependencies of the API. Most basic API tasks such as executing robots can be done without
using any of these 3rd party libraries, while some advanced features do require the usage of one or more
of these 3rd party libraries. The examples in this guide will specify when such libraries are required.

First Example

Let's start by looking at the code required to execute the robot named NewsMagazine.robot, which is
located in the Tutorials folder of the default project. The robot outputs its results using the Return Value
step action, which makes it easy to handle the output programmatically using the API. Other robots
(typically those run in a schedule by the Management Console) store their data directly in a database
using the Store in Database step action, in which case data collected by the robot will not be returned to
the API client.

In the following, we will look at how to execute the NewsMagazine robot and process the output
programmatically.

Execute a Robot without input:

 import com.kapowtech.robosuite.api.java.repository.construct.*;
 import com.kapowtech.robosuite.api.java.rql.*;
 import com.kapowtech.robosuite.api.java.rql.construct.*;

 /**
 * Example that shows you how to execute NewsMagazine.robot from tutorial1
 */
 public class Tutorial1 {

 public static void main(String[] args) throws ClusterAlreadyDefinedException {

 RoboServer server = new RoboServer("localhost", 50000);
 boolean ssl = false;
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);

 Request.registerCluster(cluster); // you can only register a cluster once per
 application

 try {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = request.execute("MyCluster");

 for (Object o : result.getOutputObjectsByName("Post")) {
 RQLObject value = (RQLObject) o;
 String title = (String) value.get("title");
 String preview = (String) value.get("preview");
 System.out.println(title + ", " + preview);
 }
 }
 }
 }

Let's start by looking at the classes involved and their responsibilities.

Kofax Kapow Developer's Guide

9

RoboServer This is a simple value object that identifies a RoboServer which can execute
robots. Each RoboServer must be activated by a Management Console and
assigned KCU before use.

Cluster A cluster is a group of RoboServer functioning as a single logical unit.
Request This class is used to construct the robot request. Before you can execute any

requests you must register a cluster with the Request class.
DefaultRobotLibrary A robot library instructs RoboServer where to find the robot identified in the

request. Later examples will explore the various robot library types and when/how
to use them.

RQLResult This contains the result of a robot execution. The result contains value responses,
log and server messages.

RQLObject Each value that is returned from a robot using the Return Value action can be
accessed as an RQLObject.

Now let's go through each line in the example an look at the specifics.

This tells the API that our RoboServer is running on localhost port 50000.
RoboServer server = new RoboServer("localhost", 50000);

This defines a cluster with a single RoboServer. The cluster is registered with the Request class, allowing
you to execute request on this cluster. Each cluster can only be registered once.

Registering a cluster:
boolean ssl = false;
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);
 Request.registerCluster(cluster);

This creates a request that will execute the robot named NewsMagazine.robot located at
Library:/Tutorials.Library:/ refers to the robot Library configured for the request. Here the
DefaultRobotLibrary is used, which instructs RoboServer to look for the robot in the servers local file
system, see Robot Libraries for details on how to use robot libraries.
Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());

This executes the robot on the cluster named MyCluster (the cluster we previously registered) and
returns the result once the robot is done. By default execute will throw an exception if the robot generates
an API exception.
RQLResult result = request.execute("MyCluster")

Here we process the extracted values. First we get all extracted values of the type named Post and
iterate through them. For each RQLObject we access the attributes of the Post type and print the result.
We will look at attributes and mappings in a later section.

 for (Object o : result.getOutputObjectsByName("Post")) {
 RQLObject value = (RQLObject) o;
 String title = (String) value.get("title");
 String preview = (String) value.get("preview");
 System.out.println(title + ": " + preview);
 }

Kofax Kapow Developer's Guide

10

Robot Input

Most robots executed through the API will be parameterized through input, such as a search keyword,
or login credentials. Input to a robot is part of the request to RoboServer and is provided using the
createInputVariable method on the request. Let us look at a short code fragment.

Input using implicit RQLObjectBuilder:

 Request request = new Request("Library:/Input.robot");
 request.createInputVariable("userLogin").setAttribute("username", "scott")
 .setAttribute("password", "tiger");

Here we create a Request and use createInputVariable to create an input variable named userLogin.
We then use setAttribute to configure the username and password attributes of the input variable.

The above example is a common shorthand notation, but can also be expressed move verbosely by using
the RQLObjectBuilder:

Input using explicit RQLObjectBuilder:

 Request request = new Request("Library:/Input.robot");
 RQLObjectBuilder userLogin = request.createInputVariable("userLogin");
 userLogin.setAttribute("username", "scott");
 userLogin.setAttribute("password", "tiger");

The two examples are identical. The first utilizes the cascading method invocation on the anonymous
RQLObjectBuilder is therefore shorter.

When RoboServer receives this request the following occurs:

▪ RoboServers loads Input.robot (from whatever RobotLibrary is configured for the request).
▪ RoboServer verifies that the robot has a variable named userLogin and that this variable is marked as

input.
▪ RoboServer now verifies that the attributes we have configured using setAttribute are compatible

with the type of variable userLogin. Which means that the type must have attributes named username
and password and that these must both be text based attributes (the next section will describe the
mapping between API and Design Studio attributes).

▪ If all input variables are compatible, RoboServer will start executing the robot.

If a robot requires multiple input variables, you must create all of them in order to execute the robot. You
only have to configure required attributes, any no-required attributes that you don't configure through the
API will just have a null value. If we assume you have a robot that requires login to both Facebook and
Twitter, you could define the input like this.
Request request = new Request("Library:/Input.robot");
 request.createInputVariable("facebook").setAttribute("username", "scott")
 .setAttribute("password", "facebook123");
 request.createInputVariable("twitter").setAttribute("username", "scott")
 .setAttribute("password", "twitter123");

Kofax Kapow Developer's Guide

11

Attribute Types

When you define a new type in Design Studio you select an attribute type for each attribute. Some of
these attributes can contain text, like Short text, Long Text, Password, HTML, XML, and when used inside
a robot there may be requirements to the text store in these attributes. If you store text in a XML attribute,
the text must be a valid XML document. This validation occurs when the type is used inside a robot, but
since the API doesn't know the anything about the type it doesn't validate attribute values in the same
manner. As a result the API only has 8 attribute types versus the 19 available in Design Studio This table
shows the mapping between the API and Design Studio attribute types.

API to Design Studio mapping

API Attribute Type Design Studio Attribute Type
Text Short Text, Long Text, Password, HTML, XML, Properties, Language, Country,

Currency, Refind Key
Integer Integer
Boolean Boolean
Number Number
Character Character
Date Date
Session Session
Binary Binary, Image, PDF

The API attribute types are then mapped to Java in the following way.

Java Types for Attributes

API Attribute Type Java Class
Text java.lang.String

Integer java.lang.Long

Boolean java.lang.Boolean

Number java.lang.Double

Character java.lang.Character
Date java.util.Date

Session com.kapowtech.robosuite.api.construct.Session

Binary com.kapowtech.robosuite.api.construct.Binary

The RQlObjectBuilder's setAttribute method is overloaded so you don't need to specify the attribute
type explicitly when configuring an attribute through the API, as long as the right java class is used as
argument. Here is an example that shows how to set the attributes for an object with all possible (Design
Studio) attribute types.

Kofax Kapow Developer's Guide

12

Recommended usage of setAttribute:

 Request request = new Request("Library:/AllTypes.robot");
 RQLObjectBuilder inputBuilder = request.createInputVariable("AllTypes");
 inputBuilder.setAttribute("anInt", new Long(42L));
 inputBuilder.setAttribute("aNumber", new Double(12.34));
 inputBuilder.setAttribute("aBoolean", Boolean.TRUE);
 inputBuilder.setAttribute("aCharacter", 'c');
 inputBuilder.setAttribute("aShortText", "some text");
 inputBuilder.setAttribute("aLongText", "a longer test");
 inputBuilder.setAttribute("aPassword", "secret");
 inputBuilder.setAttribute("aHTML", "<html>bla</html>");
 inputBuilder.setAttribute("anXML", "<tag>text</tag>");
 inputBuilder.setAttribute("aDate", new Date());
 inputBuilder.setAttribute("aBinary", new Binary("some bytes".getBytes()));
 inputBuilder.setAttribute("aPDF", (Binary) null);
 inputBuilder.setAttribute("anImage", (Binary) null);
 inputBuilder.setAttribute("aProperties", "name=value\nname2=value2");
 inputBuilder.setAttribute("aSession", (Session) null);
 inputBuilder.setAttribute("aCurrency", "USD");
 inputBuilder.setAttribute("aCountry", "US");
 inputBuilder.setAttribute("aLanguage", "en");
 inputBuilder.setAttribute("aRefindKey", "Never use this a input");

The above example explicitly uses new Long(42L), and new Double(12.34), although 42L and 12.34
would be sufficient due to auto boxing. Also notice that we have to cast null values, because the Java
compiler can't otherwise determine which of the overloaded setAttribute methods we want to call.
However since unconfigured attributes will automatically be null, you never need to set null explicitly.

It is possible to specify the Attribute and AttributeType explicitly when creating input using the API. This
is approach is not recommended, but may be needed in rare cases, and would look like this.

Incorrect usage of setAttribute:
Request request = new Request("Library:/AllTypes.robot");
 RQLObjectBuilder inputBuilder = request.createInputVariable("AllTypes");
 inputBuilder.setAttribute(new Attribute("anInt", "42", AttributeType.INTEGER));
 inputBuilder.setAttribute(new Attribute("aNumber", "12.34", AttributeType.NUMBER));
 inputBuilder.setAttribute(new Attribute("aBoolean", "true", AttributeType.BOOLEAN));
 inputBuilder.setAttribute(new Attribute("aCharacter", "c", AttributeType.CHARACTER));
 inputBuilder.setAttribute(new Attribute("aShortText", "some text", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aLongText", "a longer test", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aPassword", "secret", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aHTML", "<html>bla</html>", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("anXML", "<tag>text</tag>", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aDate", "2012-01-15 23:59:59.123",
 AttributeType.DATE));
 inputBuilder.setAttribute(new Attribute("aBinary",
 Base64Encoder.encode("some bytes".getBytes()), AttributeType.BINARY));
 inputBuilder.setAttribute(new Attribute("aPDF", null, AttributeType.BINARY));
 inputBuilder.setAttribute(new Attribute("anImage", null, AttributeType.BINARY));
 inputBuilder.setAttribute(new Attribute("aProperties", "name=value\nname2=value2",
 AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aSession", null, AttributeType.SESSION));
 inputBuilder.setAttribute(new Attribute("aCurrency", "USD", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aCountry", "US", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aLanguage", "en", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aRefindKey", "Never use this a input",
 AttributeType.TEXT));

As we can see all attribute values must be provided in the form of strings. The string values are then
converted to the appropriate Java objects based on the Attribute type provided. This is only useful if you
build other generic APIs on top of the Kapow Java API.

Kofax Kapow Developer's Guide

13

Execution Parameters

In addition to the createInputVariable method, the Request contains a number of methods that
controls how the robot executes on RoboServer.

Execution Control Methods on Request

setMaxExecutionTime(int seconds) Controls the execution time of the robot. When this time
has elapsed the robot will be stopped by RoboServer.
The timer doesn't start until the robot begins to execute,
so if the robot is queued on RoboServer this is not
taken into account.

setStopOnConnectionLost(boolean) When true (default) the robot will stop if RoboServer
discovers that the connection to the client application
has been lost. You should have a very good reason for
setting this value to false - if your code is not written
to handle this, your application will not perform as
expected.

setStopRobotOnApiException(boolean) When true (default) the robot will be stopped by
RoboServer after the first API exception is raised. By
default most steps in a Robot will raise an API exception
if the step fails to execute - this is configured on the
steps error handling tab.
When set to false, the robot will continue to execute
regardless of API exceptions, however unless your
application is using the RequestExecutor streaming
execution mode, an exception will still be thrown by
execute(), so be extremely careful when setting this to
false.

setUsername(String), setPassword(String) Sets the RoboServer credentials. RoboServer can
be configured to require authentication. When this
option is enabled, the client must provide credentials or
RoboServer will reject the request.

setRobotLibrary(RobotLibrary) A robot library instructs RoboServer where to find
the robot identified in the request. Later examples will
explore the various robot library types and when/how to
use them.

setExecutionId(String) Allows you to set the executionId for this request. If
you don't provide one, RoboServer will generate one
automatically. The execution ID is used for logging and
also needed if your client needs to be able to stop the
robot programmatically. The ID must be globally unique
(over time). If two robots use the same execution ID, the
logs will be inconsistent.

Kofax Kapow Developer's Guide

14

setProject(String) This is used solely for logging purposes. The
Management Console uses this field to link log
messaged to project, so the log views can filter by
project.
If your application is not using the
RepositoryRobotLibrary you should probably set
this value to inform the RoboServer logging system
which project (if any) this robot belongs to.

Robot Libraries

In Design Studio robots are grouped into projects. If you look in the file system you will see that these
projects are identified by a folder named Library, see Libraries and Projects for details.

When you build the execute request for RoboServer, you identify the robot by a robot URL, like this:

Request request = new Request("Library:/Input.robot");

Here, Library:/ is a symbolic reference to a robot library, in which the RoboServer should look for the
robot. The RobotLibrary is then specified on the builder like this:

request.setRobotLibrary(new DefaultRobotLibrary());

There are three different robot library implementations, which one to select depends on you deployment
environment.

Robot Libraries

Library Type Description
DefaultRobotLibrary This configures RoboServer to look for the robot in the

current project folder. This folder is defined in the Settings
application.
If you have multiple RoboServers you will have to deploy
your robots on all RoboServers.
This robot library is not cached, so the robot is reloaded from
disk with every execution. This makes the library usable in a
development environment where robots change often, but not
suitable for a production environment.

Kofax Kapow Developer's Guide

15

Library Type Description
EmbeddedFileBasedRobotLibrary This library is embedded in the execute request sent to

RoboServer. To create this library you must create a zip file
containing the robots and all its dependencies (types, snippets
and resources). This can be done the Tools->Create
Robot Library File menu in Design Studio.
The library is sent with every request, which adds some
overhead for large libraries, but the libraries are cached on
RoboServer, which offers best possible performance.
One strength is that robots and code can be deployed as a
single unit, which offers clean migration from QA environment
to production environment. However, if the robots change
often you will have to redeploy them often.
You can use the following code to configure the embedded
robot library for your request.

Request request = new
Request("Library:/Tutorials/
 NewsMagazine.robot");
RobotLibrary library =
 new EmbeddedFileBasedRobotLibrary
 (new FileInputStream
 ("c:\\embeddedLibrary.robotlib"));
request.setRobotLibrary(library);

Kofax Kapow Developer's Guide

16

Library Type Description
RepositoryRobotLibrary This is the most flexible RobotLibrary.

This library uses the Management Console's built-in repository
as a robot library. When you use this library, RoboServer
will contact the Management Console which will send a robot
library containing the robot and its dependencies.
Caching occurs on a per robot basis, inside both Management
Console and RoboServer. Inside Management Console,
the generated library is cached based on the robot and its
dependencies. On RoboServer, the cache is based on a
timeout, so it doesn't have to ask the Management Console
for each request. In addition, the library loading between
RoboServer and Management Console uses HTTP public/
private caching, to further reduce bandwidth.
If NewsMagazine.robot has been uploaded to the
Management Console we could use the repository robot
library like this when executing the robot:

Request request = new
Request("Library:/Tutorials/NewsMagazine.robot");
RobotLibrary library = new
RepositoryRobotLibrary("http://localhost:50080",
 "Default Project",
60000);
request.setRobotLibrary(library);

This will instruct RoboServer to load the robot from a local
Management Console and cache it for one minute before
checking with the Management Console to see if a new
version of the robot (it's type and snippets) has been changed.
In addition any resource loaded through the Library:/
protocol, will cause RoboServer request the resource directly
from the Management Console.

Java Advanced

In this section we will look a little closer at some of the more advanced features on the API. These include
output streaming, logging and SSL configuration, as well as parallel execution.

Load Distribution and Failover

Let's look a little closer at what happens inside the RequestExecutor. The executor is given an array of
RoboServers. As the executor is constructed it tries to connect to each RoboServer. Once it is connected
it sends a ping request to each RoboServer to discover how the server is configured.

Load balanced executor:

 RoboServer prod = new RoboServer("prod.kapow.local", 50000);
 RoboServer prod2 = new RoboServer("prod2.kapow.local", 50000);
 Cluster cluster = new Cluster("Prod", new RoboServer[]{ prod, prod2}, false);

Kofax Kapow Developer's Guide

17

 Request.registerCluster(cluster);

Let's look a little closer at what happens inside the RequestExecutor. The executor is given an array of
RoboServers. As the executor is constructed it tries to connect to each RoboServer. Once it is connected
it sends a ping request to each RoboServer to discover how the server is configured.

Load is distributed to each online RoboServer in the cluster, based on the number of unused execution
slots on the RoboServer. The next request is always distributed to the RoboServer with the most
available slots. The number of available execution slots is obtained through the initial Ping response, and
the executor keeps track of each robot it starts and when it completes. The number of execution slots on
a RoboServer is determined by the max concurrent robots on the Servers tab.

If a RoboServer goes offline it will not receive any robot execution requests before it has successfully
responded to the ping request.

Two Client Rule
You should only have one API client using a given cluster of RoboServer. If you have multiple JVMs
running robots against the same RoboServers, this will result in reduced performance.

Executor Logger

When you execute a request, the execute method will throw an exception if a robot generates an error.
Other types of errors and warnings are reported through the ExecutorLogger interface. In the previous
examples, we have not provided any ExecutionLogger when executing robots, which means we get the
default implementation that will write to system out. Let's see how the ExecutorLogger will report if one of
our RoboServers goes offline.

The example configures a cluster with a RoboServer which is not online.

ExecutorLogger, offline server example:

 RoboServer rs = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("name", new RoboServer[]{rs}, false);
 Request.registerCluster(cluster);

If you run this example if should print the following to the console.

ExecutorLogger, offline RoboServer console output:

 RoboServer{host='localhost', port=50000} went offline.
 Connection refused

Often you don't want to have your application writing directly to System.out, in that case you can provide a
different ExecutorLogger implementation, you can do so when registering the cluster.

Use DebugExecutorLogger:
Request.registerCluster(cluster, new DebugExecutorLogger());

This example uses the DebugExecutorLogger() which will also print to System.out, but only if the API
debugging is enabled. Alternative you can provide your own implementation of the ExecutorLogger,
to control how error messages should be handled. Check the ExecutorLogger JavaDoc for additional
details.

Kofax Kapow Developer's Guide

18

Data Streaming

Sometimes you need to present the results from a robot execution in real-time. In these cases you want
the API to return the extracted values immediately instead of waiting for the robot to finish its execution
and access the RQLResult.

The API offers the possibility to receive a callback every time the API receives a value that was returned
by the Robot. This is done through the RobotResponseHandler interface

Response streaming using AbstractFailFastRobotResponseHandler:

 public class DataStreaming {

 public static void main(String[] args) throws ClusterAlreadyDefinedException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, false);
 Request.registerCluster(cluster);

 try {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 RobotResponseHandler handler = new AbstractFailFastRobotResponseHandler() {
 public void handleReturnedValue(RobotOutputObjectResponse response, Stoppable
 stoppable) throws RQLException {
 RQLObject value = response.getOutputObject();
 Long personId = (Long) value.get("personId");
 String name = (String) value.get("name");
 Long age = (Long) value.get("age");
 System.out.println(personId + ", " + name + ", " + age);
 }
 };
 request.execute("MyCluster", handler);
 }
 }
 }

The above example uses the second execute method of the Request, which expects a
RobotResponseHandler in addition to the name of the cluster to execute the robot on. In this example
we create a RobotResponseHandler by extending AbstractFailFastRobotResponseHandler, which
provides default error handling, so we only need to handle the values returned by the robot.

The handleReturnedValue method is called whenever the API receives a returned value from
RoboServer. The AbstractFailFastRobotResponseHandler used in this example, will throw exceptions
in the same way as the non-streaming execute method. This means that an exception will be thrown in
response to any API exceptions generated by the robot.

The RobotResponseHandler has several methods which can be grouped into 3 categories.

Robot life cycle events
Methods which are called when the robot's execution state change on RoboServer, such as when it starts
and finishes its execution.

Robot data events
Methods which are called when the robot returns data or errors to the API.

Kofax Kapow Developer's Guide

19

Additional error handling
Methods which are called either due to an error inside RoboServer or in the API.

RobotResponseHandler - robot life cycle events

Method name Description
void requestSent(RoboServer roboServer,
ExecuteRequest request)

Called when the RequestExecutor has found the
server which will execute the request.

void requestAccepted(String executionId) Called when the found RoboServer has accepted the
request and put it into it queue.

void robotStarted(Stoppable stoppable) Called when the RoboServer begins to execute the
robot. This usually occurs immediately after the robot
has been queued, unless the RoboServer is under
heavy load, or used by multiple API clients.

void robotDone(RobotDoneEvent reason) Called when the robot is done executing on
RoboServer. The RobotDoneEvent is used to specify
if the execution terminated normally, due to an error, or if
it was stopped.

RobotResponseHandler - robot data events

Method name Description
void
handleReturnedValue(RobotOutputObjectResponse
response, Stoppable stoppable)

Called when the robot has executed a Return Value
action and the value has been returned via the socket to
the API.

void handleRobotError(RobotErrorResponse
response, Stoppable stoppable)

Called when the robot raises an API exception.
Under normal circumstances the robot will stop
executing after the first API exception. This
behavior can be overridden by using
Request.setStopRobotOnApiException(false),
in which case this method will be called multiple times.
This is useful if you want a data streaming robot to
continue to execute regardless of any generated errors.

void handleWriteLog(RobotMessageResponse
response, Stoppable stoppable)

Called when the RoboServer begins to execute the
robot. This usually occurs immediately after the robot
has been queued, unless the RoboServer is under
heavy load, or used by multiple API clients.

RobotResponseHandler - additional error handling

Method name Description
void handleServerError(ServerErrorResponse
response, Stoppable stoppable)

Called if RoboServer generates an error, for instance
if the server is too busy to process any requests, or if an
error occurs inside RoboServer which prevents it from
starting the robot.

Kofax Kapow Developer's Guide

20

Method name Description
handleError(RQLException e, Stoppable
stoppable)

Called if an error occurs inside the API. Most commonly
if the client loses the connection to RoboServer.

Many of the methods will include a Stoppable object, this object can be used to stop for instance in
response to a specific error or value returned.

Some of these methods allow you to throw an RQLException, if you do this you should be aware of
the consequences. The thread that calls the handler is the thread the calls Request.execute(), this
means that any exceptions thrown will bubble up the call stack and out the execute method. If you throw
an exception in response to handleReturnedValue, handleRobotError or handleWriteLog it is your
responsibility to invoke Stoppable.stop(), or the robot may continue to execute even though the call to
Request.execute() has completed.

Data streaming is most often used in one of the following use cases.
▪ Ajax based web application, where results are presented to the user in real-time. If data was not

streamed results could not be shown until the robot was done running.
▪ Robots that return so much data that the client would not be able to hold it all in memory throughout the

robots execution.
▪ Processes that need to be optimized so the extracted values are processed in parallel with the robot

execution.
▪ Processes that store data in databases in a custom format.
▪ Robots that should ignore or require custom handling of API exceptions (see below).

Response and error collecting using AbstractFailFastRobotResponseHandler:

public class DataStreamingCollectErrorsAndValues {

 public static void main(String[] args) throws ClusterAlreadyDefinedException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, false);
 Request.registerCluster(cluster);

 try {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setStopRobotOnApiException(false); // IMPORTANT!!
 request.setRobotLibrary(new DefaultRobotLibrary());
 ErrorCollectingRobotResponseHandler handler =
 new ErrorCollectingRobotResponseHandler();
 request.execute("MyCluster", handler);

 System.out.println("Extracted values:");
 for (RobotOutputObjectResponse response : handler.getOutput()) {
 RQLObject value = response.getOutputObject();
 Long personId = (Long) value.get("personId");
 String name = (String) value.get("name");
 Long age = (Long) value.get("age");
 System.out.println(personId + ", " + name + ", " + age);
 }

 System.out.println("Errors:");
 for (RobotErrorResponse error : handler.getErrors()) {
 System.out.println(error.getErrorLocationCode() + ", " +
 error.getErrorMessage());
 }
 }
}

Kofax Kapow Developer's Guide

21

private static class ErrorCollectingRobotResponseHandler extends
 AbstractFailFastRobotResponseHandler {

 private List<RobotErrorResponse> _errors =
 new LinkedList<RobotErrorResponse>();
 private List<RobotOutputObjectResponse> _output =
 new LinkedList<RobotOutputObjectResponse>();
 public void handleReturnedValue
 (RobotOutputObjectResponse response, Stoppable stoppable)
 throws RQLException {
 _output.add(response);
}

@Override
public void handleRobotError(RobotErrorResponse response,
 Stoppable stoppable) throws RQLException {
 // do not call super as this will stop the robot
 _errors.add(response);
}

public List<RobotErrorResponse> getErrors() {
 return _errors;
}

public List<RobotOutputObjectResponse> getOutput() {
 return _output;
 }
 }
}

The example above shows how to use a RobotResponseHandler that collects returned values and errors.
This type of handler is useful if the robot should continue to execute even when error are encountered,
this can be useful if the website is unstable and occasionally times out. Notice that only robot errors (API
exceptions) are collected by the handler, if the connection to RoboServer is lost Request.execute() will
still throw an RQLException (and the robot will be stopped by RoboServer).

For more details check the RobotResponseHandler JavaDoc.

SSL

The API communicates with RoboServer through an RQLService. The RQLService is a RoboServer
component which listens for API requests on a specific network port. When you start a RoboServer you
specify if the RoboServer should use the encrypted SSL service, or the plain socket service, or both
(using two different ports). All RoboServers in a cluster must be running the same RQLService (although
the port may be different).

Assuming we have started a RoboServer with the SSL RQLService on port 50043, like this:

RoboServer -service ssl:50043

we can use the following code.

SSL configuration

 RoboServer server = new RoboServer("localhost", 50043);
 boolean ssl = true;
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, ssl);
 Request.registerCluster(cluster);

Kofax Kapow Developer's Guide

22

All we need to do is to create the cluster as an SSL cluster and specify the SSL port used by each
RoboServer. Now all communication between RoboServer and the API will be encrypted.

For this example to work you need commons-ssl-0.3.8.jar in you application classpath, you can find it
next to the API jar file inside your Kapow installation.

In addition to data encryption, SSL offers the possibility to verify the identity the remote party. This type of
verification is very important on the Internet, as rouge Web sites could otherwise pretend to be someone
they are not. Most often your API client and RoboServers will be on the same local network, so you rarely
need to verify the identity of the other party, but the API supports this feature should it become necessary.

Because identity verification is almost never used we will not describe it in this guide. If you are
interested, you should look at the SSL examples that are included with the Java API.

Parallel Execution

Both execute methods of the Request are blocking, which means that a thread is required for each robot
execution. The examples we have looked at until now have all executed the robot directly on the main
thread, which is typically not preferable as you can only execute a single robot at a time in a sequential
manner.

Let's look at an example that will execute two tutorial robots in parallel. This example uses the
java.util.concurrent library for multithreading.

Multithreading Example

 import com.kapowtech.robosuite.api.java.repository.construct.*;
 import com.kapowtech.robosuite.api.java.rql.*;
 import com.kapowtech.robosuite.api.java.rql.construct.*;
 import com.kapowtech.robosuite.api.java.rql.engine.hotstandby.*;

 import java.util.concurrent.*;

 public class ParallelExecution {

 public static void main(String[] args) throws Exception {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server},
 false);
 Request.registerCluster(cluster);

 int numRobots = 4;
 int numThreads = 2;
 ThreadPoolExecutor threadPool = new ThreadPoolExecutor(numThreads,
 numThreads, 10, TimeUnit.SECONDS, new LinkedBlockingQueue());
 for (int i = 0; i < numRobots; i++) {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 threadPool.execute(new RobotRunnable(request));
 }
 threadPool.shutdown();
 threadPool.awaitTermination(60, TimeUnit.SECONDS);
 }

 // ---
 // Inner classes
 // ---
 static class RobotRunnable implements Runnable {

 Request _request;

Kofax Kapow Developer's Guide

23

 RobotRunnable(Request request) {
 _request = request;
 }

 public void run() {

 try {
 RQLResult result = _request.execute("MyCluster");
 System.out.println(result);
 }
 }
 }
 }

The above example creates a ThreadPoolExecutor with two threads, we then creates four
RobotRunnables and execute them on the thread pool. Since the thread pool has two threads, two
robots will start to execute immediately, the remaining two will be parked in the LinkedBlockingQueue
and executed in order as the two first robot finish their execution and the thread pool threads become
available.

Please note that the Request is mutable, to avoid raise conditions the Request is cloned inside the
execute method. Because Request is mutable you should never modify the same Request on separate
threads.

Repository Integration

In the Management Console you also specify cluster of RoboServers, these are used to execute
scheduled robots, as well as robots executed as REST services. The API allowed you to use
the RepositoryClient to obtain cluster information from Management Console, check the
RepositoryClient documentation for details.

Repository Integration:

 public class RepositoryIntegration {
 public static void main(String[] args) throws Exception {

 RepositoryClient client = RepositoryClientFactory.createRepositoryClient
 ("http://localhost:50080", null, null);
 Request.registerCluster(client, "Cluster 1");

 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = request.execute("MyCluster");
 System.out.println(result);
 }
 }

The above example shows how to create a RepositoryClient which connects to a Management
Console deployed on localhost. For this example to work, you must have commons-
logging-1.1.1.jar,commons-codec-1.4.jar,commons-httpclient-4.1.jar included in your classpath.

Authentication is not enabled so null is passed as both username and password. When we register the
RepositoryClient we specify the name of a cluster which exists on the Management Console, this will
then query the Management Console to get a list of RoboServers configured for this cluster, and check
every 2 minutes to see if the cluster configuration has been updated on the Management Console.

This integration allows you to create a cluster on Management Console that you can change dynamically
using the Management Console user interface. When you use a Management Console cluster with the

Kofax Kapow Developer's Guide

24

API usage should be exclusive, and you should not use it for scheduling robot, as this would break the
two client rule.

Under the Hood

The section will explain what is going on under the hood when you register a cluster and execute a
Requests.

When you register a Cluster with the Request, a RequestExecutor is created behind the scene. This
RequestExecutor is stored in a Map using the cluster name as key. When a request is executed the
provided cluster name is used to find the associated RequestExecutor and execute the request.

Let's look at a short example.

Normal execution

 public static void main(String[] args) throws InterruptedException,
 RQLException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 Request.registerCluster(cluster);
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = request.execute("MyCluster");
 System.out.println(result);
}

Now let's write the same example by using the hiddenRequestExecutor directly

Under the hood execution :

public static void main(String[] args) throws InterruptedException,
 RQLException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 RequestExecutor executor = new RequestExecutor(cluster);

 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = executor.execute(request);
 System.out.println(result);
 }

The reason the RequestExecutor is hidden by default, is so you don't have to keep track of it. You may
only create one RequestExecutor per cluster, so if you use it directly you need to store a reference to it
throughout your application. Using Request.registerCluster(cluster) means that you can blissfully
ignore the RequestExecutor and lifecycle rules.

The RequestExecutor contains the necessary state and logic which provides the load balancing and
failover features. Using the RequestExecutor directly also offers a few extra features, which we will look
at.

Kofax Kapow Developer's Guide

25

RequestExecutor Features

When the RequestExecutor is not connected to a repository, you can dynamically add remove
RoboServers, by calling addRoboServer(..) and removeRoboServer(..). These methods modifies the
distribution list used inside the RequestExecutor.

RequestExecutor.getTotalAvailableSlots() returns the number of unused execution slots across all
RoboServers in the internal distribution list.

By using these methods you can dynamically add RoboServers to your RequestExecutor once the
number of available execution slots becomes low.

When you create the RequestExecutor you may optionally provide an RQLEngineFactory. The
RQLEngineFactory allows you to customize which RQLProtocol is used when connecting to a
RoboServer. This is only needed under very rare circumstances, for instance if you want use a client
certificate to increase security, check API Client Certificates for details.

Web Applications

The RequestExecutor contains a number of internal threads used for sending and receiving requests
to RoboServers, as well as pinging each known RoboServer at regular intervals. These threads are all
marked as daemon, which means that they don't prevent the JVM from stopping when the main thread
exists, check Thread JavaDoc for details on daemon threads.

If you use the RequestExecutor inside a web application, the JVM has a longer lifespan than your web
application, and you can deploy and un-deploy your web application while the web container is running.
This means that a web application is responsible for stopping any threads that it has created, if it does
not a memory leak will be created when you un-deploy the web application. The memory leak occurs
because any objects referenced by running threads can't be garbage collected until the threads stop, so if
these threads are not stopped when the application is un-deployed, they will never be garbage collected.

If you use the RequestExecutor inside a web application your code is responsible for shutting down
these internal threads, this is done by calling Request.shutdown() or RequestExecutor.shutdown() if
your code created the RequestExecutor explicitly.

This example show you how to use a ServletContextListener to shutdown the API correctly when a
web application is un-deployed. You must define the context listener in your applications web.xml.

proper shutdown in web application:
import com.kapowtech.robosuite.api.java.repository.construct.*;
 import com.kapowtech.robosuite.api.java.rql.*;
 import com.kapowtech.robosuite.api.java.rql.construct.*;

 import javax.servlet.*;

 public class APIShutdownListener implements ServletContextListener {
 public void contextInitialized(ServletContextEvent servletContextEvent) {
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server},
 false);
 try {
 Request.registerCluster(cluster);
 }
 catch (ClusterAlreadyDefinedException e) {

Kofax Kapow Developer's Guide

26

 throw new RuntimeException(e);
 }
 }

 public void contextDestroyed(ServletContextEvent servletContextEvent) {
 Request.shutdown();
 }
 }

contextDestroyed is called when the web container un-deploys the application. Here we call
Request.shutdown() to ensure that all internal threads in the hidden RequestExecutor are stopped
correctly.

Since contextInitialized can't throw any unchecked exceptions we have to wrap the
ClusterAlreadyDefinedException in a RunTimeException. Developers may be tempted to ignore the
ClusterAlreadyDefinedException at this location, because they claim that it can't be thrown, as our
application has not defined any other clusters. However due to the class loader hierarchy in java web
containers it is actually possible to get this exception if the application is deployed twice. It will however
only occur if the API jar file was loaded by a common class loader and not by the individual application's
class loader.

API Debugging

Although this is rarely needed, the API can provide additional information for debugging purposes. To
enable API debugging you need to configure the system property DEBUG_ON. The value of this property
must be a package/class name the API.

For instance, if you are interested in the data transmissions between the API and RoboServer, you could
ask for debugging information for package com.kapowtech.robosuite.api.java.rql.io. While you are
developing you can do this by directly setting the system property in code, like this:

Enabling Debug:

 System.setProperty("DEBUG_ON", "com.kapowtech.robosuite.api.java.rql.io");
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 Request.registerCluster(cluster);

If you are debugging an application in production, you would define the system property via the command
line, like this.

Enabling Debug:
java -DDEBUG_ON=com.kapowtech.robosuite.api.java.rql.io Tutorial1

If you are interested in debug from multiple packages, you separate the package names by , (comma).
Instead of a package name, you can provide the argument ALL, to have debug from all packages printed.

Kofax Kapow Developer's Guide

27

Repository API

The Repository API allows you to query the Management Console's Repository, to get a list of projects,
robots and the input required to call a robot. It also allows you to programmatically deploy robots, types
and resource files.

Dependencies
To use the Repository API you need the following libraries, all libraries can be found in the API/robosuite-
java-api/lib folder inside you Kapow installation folder

▪ commons-codec-1.4.jar
▪ commons-httpclient-4.1.jar, or newer
▪ commons-logging-1.1.1.jar
▪ commons-ssl-0.3.8.jar or newer: if your Management Console must be accessed through HTTPS
▪ dom4j-1.6.1.jar
▪ xstream-1.4.7.jar

Use Java 8 or later.

Repository Client

Communication with the repository is achieved through the RepositoryClient found in the
com.kapowtech.robosuite.api.java.repository.engine

Create RepositoryClient :

 public static void main(String[] args) {

 String username = "admin";
 String password = "admin";
 try {
 RepositoryClient client = RepositoryClientFactory.
 createRepositoryClient("http://localhost:50080/",
 username, password);
 Project[] projects = client.getProjects();
 for (Project project : projects) {
 System.out.println(project.getName());
 }
 }
 }

Here we see a RepositoryClient configured to connect to Management Console's repository on
http://localhost:50080/ , with a username and password.

Once the RepositoryClient is created, we use the getProjects() method to query the
repository for a list of projects. Notice that when calling any of the RepositoryClient methods, a
RepositoryClientException will be thrown if an error occurs.

The RepositoryClient has the following eleven methods.

Methods of the RepositoryClient:

Kofax Kapow Developer's Guide

28

Method signature Description
void deleteResource(String projectName,
String resourceName, boolean silent)

Deletes a resource from a project. If silent is true no
error is generated if the resource doesn't exist. The
resourceName argument uses the full path of the
resource.

void deleteRobot(String projectName,
String robotName, boolean silent)

Deletes a robot from a project. The robotName
argument uses the full path of the robot.

void deleteSnippet(String projectName,
String snippetName, boolean silent)

Deletes a snippet from a project. The snippetName
argument uses the full path of the snippet.

void deleteType(String projectName, String
modelName, boolean silent)

Deletes a type from a project. The modelName argument
uses the full path of the type.

void deployLibrary(String projectName,
EmbeddedFileBasedRobotLibrary library,
boolean failIfExists)

Deploys a library to the server. Robots, types and
resources will be overridden unless failIfExists is
true.

void deployResource(String projectName,
String resourceName, byte[] resourceBytes,
boolean failIfExists)

Deploys a resource to a project. If a resource with the
given name already exist it can be overridden by setting
failIfExists to false. The resourceName argument
uses the full path of the resource.

void deployRobot(String projectName,
String robotName, byte[] robotBytes,
boolean failIfExists)

Deploys a robot to a project. If a robot with the given
name already exist it can be overridden by setting
failIfExists to false. The robotName argument
uses the full path of the robot.

void deploySnippet(String projectName,
String snippetName, byte[] snippetBytes,
boolean failIfExists)

Deploys a snippet to a project. If a snippet with the
given name already exist it can be overridden by setting
failIfExists to false. The snippetName argument
uses the full path of the snippet.

void deployType(String projectName, String
typeName, byte[] typeBytes, boolean
failIfExists)

Deploys a type to a project. If a type with the given
name already exist it can be overridden by setting
failIfExists to false. The typeName argument uses
the full path of the type.

Project[] getProjects() Returns the projects that exist in this repository
Cluster[] getRoboServerClusters() Returns a list of clusters and online(valid) RoboServers

that are registered with the Management Console
running the repository.

Cluster[] getRoboServerClusters(boolean
onlineRoboServer)

Returns a list of clusters and Roboservers that are
registered with the Management Console. Use
onlineRoboServer flag to indicate if the clusters should
include only the online or all of the RoboServers.

Cluster addRoboServer(String clusterName,
int portNumber, String host)

Adds a new RoboServer to a cluster.

Robot[] getRobotsInProject(String
projectName)

Returns the full path of the robots available in the project.

RobotSignature getRobotSignature(String
projectName, String robotName)

Returns the robot signature with the full path of the robot,
as well as the input variables required to execute this
robot and a list of the types it may return or store.

RepositoryFolder
getProjectInventory(String projectName)

Returns the entire tree of folders and files from the
repository.

RepositoryFolder getFolderInventory(String
projectName, String folderPath)

Returns the folders and files of the sub folder in the
specified project from the repository.

Kofax Kapow Developer's Guide

29

Method signature Description
RepositoryFolder getFileInventory(String
projectName, String folderPath, String
fileName, RepositoryFile.Type fileType)

Gets the file and the referenced files from the
management console. Remark, the file inventory is
wrapped in a RepositoryFolder, to get references.

void deleteFile(RepositoryFile file, bool
silent)

Deletes the specified file from the repository.

Date getCurrentDate() Returns current date and time of the Management
Console.

byte[] getBytes(RepositoryFile file) Returns the size in bytes of the specified file in the
repository.

String computeChecksum(byte[] bytes) Returns the checksum of the specified file to verify data
integrity.

void updateFile(RepositoryFile file,
byte[] bytes)

Updates the specified file in the repository with new
bytes.

void moveFile (RepositoryFile sourceFile,
String destFolderPath)

Moves the specified file from the repository to a folder
specified in destFolderPath.

void renameRobot(RepositoryFile robotFile,
String newName)

Renames the specified robot file.

void deleteFolder(String projectName,
String folderPath)

Deletes the specified folder in the repository.

void deleteRoboServer(String clusterName,
RoboServer roboServer)

Deletes a RoboServer.

Map<String, String> getInfo() Returns information about the Management Console and
the Repository API
The method returns a mapping of the following:
▪ "application" to the version of the Management

Console containing major, minor and dot version, for
example, 10.0.0

▪ "repository" to the ID of the latest DTD used
by the Repository API, for example, //Kapow
Technologies//DTD Repository 1.5//EN

▪ "rql" to the ID of the latest DTD used by the Robot
Query Language API, for example, //Kapow
Technologies//DTD RoboSuite Robot Query
Language 1.13//EN

Note The full path is relative to your project folder.

Proxy servers must be specified explicitly when creating the RepositoryClient. Standard http proxy
servers without authentication are supported. NTLM proxy servers with authentication is also supported.

Check the RepositoryClient JavaDoc for additional details

Deployment via Repository Client

The following example shows how to deploy a robot and a type from the local file system using the
RepositoryClient.

Kofax Kapow Developer's Guide

30

Deployment using RepositoryClient:

String user = "test";
 String password = "test1234";
 RepositoryClient client = new RepositoryClient("http://localhost:50080", user,
 password);
 try {
 FileInputStream robotStream = new FileInputStream
 ("c:\\MyRobots\\Library\\Test.robot");
 FileInputStream typeStream = new FileInputStream
 ("c:\\MyRobots\\Library\\Test.type");

 // Use the Kapow Java APIs StreamUtil to convert InputStream to byte[].
 // For production we recommend IOUtils.toByteArray(InputStream i)
 in the commons-io library from apache.
 byte[] robotBytes = StreamUtil.readStream(robotStream).toByteArray();
 byte[] typeBytes = StreamUtil.readStream(typeStream).toByteArray();

 // we assume that no one has deleted the Default project
 client.deployRobot("Default project", "Test.robot", robotBytes, true);
 client.deployType("Default project", "Test.type", typeBytes, true);
 }
 catch (FileNotFoundException e) {
 System.out.println("Could not load file from disk " + e.getMessage());
 }
 catch (IOException e) {
 System.out.println("Could not read bytes from stream " + e.getMessage());
 }
 catch (FileAlreadyExistsException e) {
 // either the type or file already exist in the give project
 System.out.println(e.getMessage());
 }

Repository Rest API

The repository API is actually a group of restful services (and URLs where data can be posted).

All the Repository Client methods that retrieve information from the repository sends XML to the
Repository, and the Repository responds with XML. All deploy methods post bytes to the Repository
(information encoded in URL) and the Repository return XML to acknowledge. The format of the XML
sent and received is governed by a DTD found at www.kapowtech.com.

Here is an example of all the XML based requests, all messages must start with the following declaration

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE repository-request PUBLIC "-//Kapow Technologies//
DTD Repository 1.3//EN" "http://www.kapowtech.com/robosuite/
repository_1_5.dtd">

If the Management Console is deployed at http://localhost:8080/ManagementConsole, the requests must
be posted to http://localhost:8080/ManagementConsole/secure/RepositoryAPI?format=xml

Snippets
A number of XML snippets are used throughout the API and the following are snippets used in the
examples. We recommend studying the DTD to understand the structure of the data.

When sending requests we often need to describe a file. Similarly, responses contain data about a file.
The following table shows snippets that are found shortened out in the examples. The constructs have
been added to the 1.5 DTD to assist in project synchronization between Design Studio and Management
Console.

http://www.kapowtech.com/robosuite/repository_1_3.dtd

Kofax Kapow Developer's Guide

31

Snippet Name Code
repository-file-request <repository-file-request> <project-

name>Default project</project-name>
<name>ExName</name> <type>snippet</
type> <path>subfolder</path> <last-
modified>2015-02-01 19:26:12.321</last-
modified> <last-modified-by>username</
last-modified-by> <checksum>a342ddaf</
checksum> </repository-file-request>

repository-file <repository-file><name>filename</
name> <type>ROBOT</name><last-
modified>2015-02-01 19:26:12.321</last-
modified><last-modified-by>username</
last-modified-by><checksum>a342ddaf</
checksum><dependencies><dependency><name>exsnippet</
name><type>snippet</type></dependency> </
dependencies></repository-file>

REST Operations

Method Example Request Example Response
delete-file (robot) <repository-request> <delete-

file file-type="robot"
silent="true"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><delete-
successful/></repository-
response>

delete-file (type) <repository-request> <delete-
file file-type="type"
silent="false"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><error
type="file-not-found">Could
not find a Type named
InputA.type in project
'Default project'</error></
repository-response>

delete-file (snippet) <repository-request> <delete-
file file-type="snippet"
silent="true"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><delete-
successful/></repository-
response>

delete-file (resource) <repository-request> <delete-
file file-type="resource"
silent="true"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><delete-
successful/></repository-
response>

Kofax Kapow Developer's Guide

32

Method Example Request Example Response
get-projects <repository-request> <get-

projects/> </repository-
request>

<repository-response><project-
list><project-name>Default
project</project-name></
project-list></repository-
response>

get-robots-in-project <repository-request> <get-
robots-in-project> <project-
name>Default project</project-
name> </get-robots-in-project>
</repository-request>

<repository-response><robot-
list><robot><robot-
name>DoNothing.robot</
robot-name><version>7.2</
version><last-
modified>2011-10-11
18:24:12.648</last-modified></
robot></robot-list></
repository-response>

Kofax Kapow Developer's Guide

33

Method Example Request Example Response
get-robot-signature <repository-request> <get-

robot-signature> <project-
name>Default project</
project-name> <robot-
name>DoNothing.robot</robot-
name> </get-robot-signature>
</repository-request>

<repository-response><robot-
signature><robot-
name>DoNothing.robot</
robot-name><version>7.2</
version><last-
modified>2011-10-11
18:24:12.648</last-
modified><input-object-
list><input-object><variable-
name>InputA</variable-
name><type-name>InputA</
type-name><input-
attribute-list><input-
attribute><attribute-
name>aString</attribute-
name><attribute-type>Short
Text</attribute-type></
input-attribute><input-
attribute><attribute-
name>anInt</attribute-
name><attribute-type>Integer</
attribute-type></
input-attribute><input-
attribute><attribute-
name>aNumber</attribute-
name><attribute-type>Number</
attribute-type></
input-attribute><input-
attribute><attribute-
name>aSession</attribute-
name><attribute-type>Session</
attribute-type></
input-attribute><input-
attribute><attribute-
name>aBoolean</attribute-
name><attribute-type>Boolean</
attribute-type></
input-attribute><input-
attribute><attribute-
name>aDate</attribute-
name><attribute-type>Date</
attribute-type></
input-attribute><input-
attribute><attribute-
name>aCharacter</
attribute-name><attribute-
type>Character</attribute-
type></input-attribute><input-
attribute><attribute-
name>anImage</attribute-
name><attribute-type>Image</
attribute-type></input-
attribute></input-attribute-
list></input-object><input-
object><variable-name>InputB</
variable-name><type-
name>InputB</type-
name><input-attribute-
list><input-attribute
required="true"><attribute-
name>aString</attribute-
name><attribute-type>Short
Text</attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>anInt</attribute-
name><attribute-type>Integer</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>aNumber</attribute-
name><attribute-type>Number</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>aSession</attribute-
name><attribute-type>Session</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>aBoolean</attribute-
name><attribute-type>Boolean</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>aDate</attribute-
name><attribute-type>Date</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>aCharacter</
attribute-name><attribute-
type>Character</
attribute-type></input-
attribute><input-attribute
required="true"><attribute-
name>anImage</attribute-
name><attribute-type>Image</
attribute-type></input-
attribute></input-attribute-
list></input-object></
input-object-list><returned-
type-list><returned-
type><type-name>OutputA</
type-name><returned-
attribute-list><returned-
attribute><attribute-
name>aString</attribute-
name><attribute-type>Short
Text</attribute-type></
returned-attribute></
returned-attribute-list></
returned-type></returned-type-
list><stored-type-list/></
robot-signature></repository-
response>

Kofax Kapow Developer's Guide

34

Method Example Request Example Response
get-clusters <repository-request> <get-

clusters/> </repository-
request>

<repository-
response><clusters><cluster
name="Cluster 1"
ssl="false"><roboserver
host="localhost" port="50000"/
></cluster></clusters></
repository-response>

get-current-date <repository-request> <get-
current-date/> </repository-
request>

<repository-response>
<current-date>2015-02-01
19:26:12.321</current-date> </
repository-response>

get-bytes <repository-request> <get-
bytes> <repository-file-
request>EXAMPLE</repository-
file-request> </get-bytes> </
repository-request>

<repository-response> <file-
content> <file-bytes><!
[CDATA[--- BASE 64 Encoded
file content ---]]> </file-
bytes> </file-content> </
repository-response>

get-project-inventory <repository-request> <get-
project-inventory> <project-
name>Default project</project-
name> </get-project-inventory>
</repository-request>

<repository-response>
<repository-folder> <path></
path> <sub-folders>
-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero,
one or more repository-
file elements -- </files>
<references> -- zero, one or
more repository-file elements
needed by robots in folder --
</references> </repository-
folder> </repository-response>

get-folder-inventory <repository-request> <get-
folder-inventory> <project-
name>Default project</project-
name> <path>subfolder</path>
</get-folder-inventory> </
repository-request>

<repository-response>
<repository-folder> <path></
path> <sub-folders>
-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero,
one or more repository-
file elements -- </files>
<references> -- zero, one or
more repository-file elements
needed by robots in folder --
</references> </repository-
folder> </repository-response>

Kofax Kapow Developer's Guide

35

Method Example Request Example Response
get-file-inventory <repository-request> <get-

file-inventory> <project-
name>Default project</project-
name> <path>subfolder</
path> <name>robotname</name>
<type>robot</type> </get-
file-inventory> </repository-
request>

<repository-response>
<repository-folder> <path></
path> <sub-folders>
-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero,
one or more repository-
file elements -- </files>
<references> -- zero, one or
more repository-file elements
needed by robots in folder --
</references> </repository-
folder> </repository-response>

update-file <repository-request> <update-
file> <repository-file-
request>...</repository-
file-request> <file-bytes><!
[CDATA[--- BASE 64 Encoded
file content ---]]> </update-
file> </repository-request>

<repository-response> <update-
successful/> </repository-
response>

get-clusters <repository-request>
<get-clusters online-
roboserver='true'/> </
repository-request>

<repository-response>
<clusters> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> </cluster>
</clusters> </repository-
response>

add-roboserver <repository-request> <add-
roboserver> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> </cluster>
<roboserver host='localhost'
port='50001' primary='true'/
> </add-roboserver> </
repository-request>

<repository-response>
<clusters> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> <roboserver
host='localhost' port='50001'
primary='true'/> </cluster>
</clusters> </repository-
response>

delete-roboserver <repository-request> <add-
roboserver> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> <roboserver
host='localhost' port='50001'
primary='true'/> </cluster>
<roboserver host='localhost'
port='50001' primary='true'/
> </add-roboserver> </
repository-request>

<repository-response>
<cluster name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> </cluster> </
repository-response>

Kofax Kapow Developer's Guide

36

Method Example Request Example Response
delete-folder <repository-request> <delete-

folder> <project-name>Default
project</project-name>
<path>path/to/empty/folder</
path> </delete-folder> </
repository-request>

<repository-response> <delete-
successful/> </repository-
response>

move-file <repository-request> <move-
file> <repository-file-
request>...</repository-
file-request> <path>new/
destination/path</path> </
move-file> </repository-
request>

<repository-response> <update-
successful/> </repository-
response>

Rename-robot <repository-request> <rename-
robot> <repository-file-
request>...</repository-
file-request> <file-
name>newnameofrobot</file-
name> </rename-robot> </
repository-request>

<repository-response> <update-
successful/> </repository-
response>

Note Robot, Type, Snippet, and Resource names must be specified as full path. The full path is relative
to your project folder.

The deployment is done by posting the raw bytes (the octet-stream is sent as a post body) to the following
URLs. Here is an example where the repository is deployed on http://localhost:8080/ManagementConsole

Methods of the deploy operations:

Operation URL
deploy robot http://localhost:8080/ManagementConsole/secure/

RepositoryAPI?
format=bytes&operation=deployRobot&projectName=Default
project&fileName=DoNothing.robot&failIfExists=true

deploy type http://localhost:8080/ManagementConsole/secure/
RepositoryAPI?
format=bytes&operation=deployType&projectName=Default
project&fileName=InputA.type&failIfExists=true

deploy Snippet http://localhost:8080/ManagementConsole/secure/
RepositoryAPI?
format=bytes&operation=deploySnippet&projectName=Default
project&fileName=A.snippet&failIfExists=true

deploy resource http://localhost:8080/ManagementConsole/secure/
RepositoryAPI?
format=bytes&operation=deployResource&projectName=Default
project&fileName=resource.txt&failIfExists=true

Kofax Kapow Developer's Guide

37

Operation URL
deploy library http://localhost:8080/ManagementConsole/secure/

RepositoryAPI?
format=bytes&operation=deployLibrary&projectName=Default
project&fileName=NA&failIfExists=true

If authentication is enabled on Management Console the URL http://localhost:8080/
ManagementConsole/secure/RepositoryAPI is protected by basic authentication. This allows you to
include credentials in the URL in the following manner http://username:password@localhost:8080/
ManagementConsole/secure/RepositoryAPI.

38

Chapter 2

.NET Programmer's Guide

This guide describes how to execute Robots using the Kapow .NET API. The guide assumes that you
have completed the Design Studio tutorials and know how to write simple Robots, and that you are
familiar with the C# programming language.

The programmer's guide has been completely rewritten for version 9.1, as large portions of the API has
been deprecated, and a new execution API has been created. The API is still backwards compatible, but
you should familiarize yourself with the new API and consider rewriting existing application to use the new
API, as the deprecated classes will be removed in future releases.

The old RobotExecuter has been deprecated because of the following reasons

▪ Robots would continue to execute on RoboServer even after an RQLException was thrown by the API.
▪ Robots would continue to execute even if RoboServer lost connection to the client, resulting in log

errors for every Return Value executed.
▪ The distribution policies didn't look at server capacity when distributing requests.
▪ It was cumbersome to implement object streaming, because there were many hidden pitfalls when

implementing a custom RQLHandler

You can still find the old .NET programmer's guide, at http://help.kapowtech.com/8.2/topic/doc/dotnet/
Top.html

Details about specific classes can be found in the compiled help, robosuite-dotnet-api.chm located
in \API\robosuite-dotnet-api\docs inside the Kapow installation folder.

.Net Basics

By using the .NET API, any .NET based application (.NET 4.0 required) can become a client to
RoboServer. In addition to running robots that store data in a database, you can also have the robots
return data directly back to the client application. Here are some examples:

▪ Use multiple robots to do a federated search, which aggregates results from multiple sources in real
time.

▪ Run a robot in response to an event on your application back-end. For instance run a robot when a
new user signs up, to create accounts on web-based systems not integrated directly into your back-
end.

The basic section of this guide will introduce the core classes, and how to use them for executing robots.
We will also describe how to provide input to robots and control their execution on RoboServer.

The .NET API is a .dll file, and it is located in /API/robosuite-dotnet-api/lib/robosuite-dotnet-api.dll inside
the Kapow installation folder, see the Important Folders in Kapow topic in the Installation Guide for details.

Kofax Kapow Developer's Guide

39

All examples in this guide can also be found in /API/robosuite-dotnet-api/examples. Located next to
the .NET API is log4net.dll which is a required 3rd-party library.

First Example

Let's start by looking at the code required to execute the robot named NewsMagazine.robot, which is
located in the Tutorials folder of the default project. The robot outputs its results using the Return Value
step action, which makes it easy to handle the output programmatically using the API. Other robots
(typically those run in a schedule by the Management Console) store their data directly in a database
using the Store in Database step action, in which case data collected by the robot will not be returned to
the API client.

In the following, we will look at how to execute the NewsMagazine robot and process the output
programmatically.

Execute a Robot without input:
using System;
 using System.Collections.Generic;
 using System.Text;
 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Repository.Construct;
 using Com.KapowTech.RoboSuite.Api.Construct;

 namespace Examples
 {
 class Program
 {
 static void Main(string[] args)
 {
 var server = new RoboServer("localhost", 50000);
 var ssl = false;
 var cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);

 Request.RegisterCluster(cluster); // you can only register a cluster
 once per application

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();
 RqlResult result = request.Execute("MyCluster");

 foreach (RqlObject value in result.GetOutputObjectsByName("Post")) {
 var title = value["title"];
 var preview = value["preview"];
 Console.WriteLine(title + ", " + preview);
 }
 Console.ReadKey();
 }
 }
 }

Let's start by looking at the classes involved and their responsibilities.

RoboServer This is a simple value object that identifies a RoboServer which can execute
robots. Each RoboServer must be activated by a Management Console and
assigned KCU before use.

Cluster A cluster is a group of RoboServer functioning as a single logical unit.
Request This class is used to construct the robot request. Before you can execute any

requests you must register a cluster with the Request class.

Kofax Kapow Developer's Guide

40

DefaultRobotLibrary A robot library instructs RoboServer where to find the robot identified in the
request. Later examples will explore the various robot library types and when/
how to use them.

RQLResult This contains the result of a robot execution. The result contains value
responses, log and server messages.

RQLObject Each value that is returned from a robot using the Return Value action can be
accessed as an RQLObject.

Now let's go through each line in the example an look at the specifics.

The first line tells the API that our RoboServer is running on localhost port 50000.
var server = new RoboServer("localhost", 50000);

The next three lines defines a cluster with a single RoboServer. The cluster is registered with the Request
class, allowing you to execute request on this cluster. Each cluster may only be registered once per
application, this is usually done during the initialization of the application.

Registering a cluster:
var ssl = false;
 var cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);
 Request.RegisterCluster(cluster);

This is then followed by code that creates a request that will execute the robot named
NewsMagazine.robot located at Library:/Tutorials Library:/ refers to the robot Library configured for the
request. Here the DefaultRobotLibrary is used, which instructs RoboServer to look for the robot in the
servers local file system, see Robot Libraries for details on how to use robot libraries.
var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();

The next line executes the robot on the cluster named MyCluster (the cluster we previously registered)
and returns the result once the robot is done. If an error occurs while the robot is executing an exception
will be thrown here.
RqlResult result = request.Execute("MyCluster");

Finally we process the extracted values. First we get all extracted values of the type named Post , and
iterate through them. For each RQLObject we access the attributes of the Post type, and print the result.
We will look at attributes and mappings in a later section.

 foreach (RqlObject value in result.GetOutputObjectsByName("Post")) {
 var title = value["title"];
 var preview = value["preview"];
 Console.WriteLine(title + ", " + preview);

Robot Input

Most robots executed through the API will be parametrized through input, such as a search keyword,
or login credentials. Input to a robot is part of the request to RoboServer, and is provided using the
createInputVariable method on the request. Let us look at a short code fragment.

Input using implicit RQLObjectBuilder

 var request = new Request("Library:/Tutorials/Input.robot");

Kofax Kapow Developer's Guide

41

 request.CreateInputVariable("userLogin").SetAttributeEntry
 ("username", "scott").SetAttributeEntry("password", "tiger");

Here we create a Request and use CreateInputVariable to create an input variable named userLogin.
We then use setAttribute to configure the username and password attributes of the input variable.

The above example is a common shorthand notation, but can also be expressed move verbosely by using
the RqlObjectBuilder:
 var request = new Request("Library:/NewsMagazine.robot");
 RqlObjectBuilder userLogin = request.CreateInputVariable("userLogin");
 userLogin.SetAttributeEntry("username", "scott");
 userLogin.SetAttributeEntry("password", "tiger");

The two examples are identical. The first utilizes the cascading method invocation on the anonymous
RqlObjectBuilder and is therefore shorter.

When RoboServer receives this request the following occurs:
▪ RoboServers loads Input.robot (from whatever RobotLibrary is configured for the request).
▪ RoboServer verifies that the robot has a variable named userLogin and that this variable is marked as

input.
▪ RoboServer now verifies that the attributes we have configured using setAttribute are compatible

with the type of variable userLogin. Which means that the type must have attributes named username
and password and that these must both be text based attributes (the next section will describe the
mapping between API and Design Studio attributes).

▪ If all input variables are compatible, RoboServer will start executing the robot.

If a robot requires multiple input variables, you must create all of them in order to execute the robot. You
only have to configure required attributes, any no-required attributes that you don't configure through the
API will just have a null value. If we assume you have a robot that requires login to both Facebook and
Twitter, you could define the input like this.

 Request request = new Request("Library:/Input.robot");
 request.CreateInputVariable("facebook").SetAttributeEntry
 ("username", "scott").SetAttributeEntry("password", "facebook123");
 request.CreateInputVariable("twitter").SetAttributeEntry
 ("username", "scott").SetAttributeEntry("password", "twitter123");

Attribute Types

When you define a new type in Design Studio you select an attribute type for each attribute. Some of
these attributes can contain text, like Short text, Long Text, Password, HTML, XML, and when used
inside a robot there may be requirements to the text stored in these attributes. If you store text in a XML
attribute, the text must be a valid XML document. This validation occurs when the type is used inside a
robot, but since the API doesn't know anything about the type it doesn't validate attribute values in the
same manner. As a result the API only has 8 attribute types versus the 19 available in Design Studio This
table shows the mapping between the API and Design Studio attribute types.

API to Design Studio mapping

API Attribute Type Design Studio Attribute Type
Text Short Text, Long Text, Password, HTML, XML, Properties, Language, Country,

Currency, Refind Key

Kofax Kapow Developer's Guide

42

API Attribute Type Design Studio Attribute Type
Integer Integer
Boolean Boolean
Number Number
Character Character
Date Date
Session Session
Binary Binary, Image, PDF

The API attribute types are then mapped to .NET in the following way.

.Net Types for Attributes

API Attribute Type Java Class
Text System.String (string)
Integer System.Int64

Boolean System.Boolean (bool)
Number System.Double (double)
Character System.Char (char)
Date System.DateTime

Session Com.Kapowtech.Robosuite.Api.Construct.Session

Binary Com.Kapowtech.Robosuite.Api.Construct.Binary

The RqlObjectBuilder setAttribute method is overloaded so you don't need to specify the attribute
type explicitly when configuring an attribute through the API, as long as the right .NET class is used as
argument. Here is an example that shows how to set the attributes for an object with all possible (Design
Studio) attribute types.

Recommended usage of setAttribute:

 RqlObjectBuilder inputBuilder = request.CreateInputVariable("AllTypes");
 inputBuilder.SetAttributeEntry("anInt", 42L);
 inputBuilder.SetAttributeEntry("aNumber", 12.34d);
 inputBuilder.SetAttributeEntry("aBoolean", true);
 inputBuilder.SetAttributeEntry("aCharacter", 'c');
 inputBuilder.SetAttributeEntry("aShortText", "some text");
 inputBuilder.SetAttributeEntry("aLongText", "a longer text");
 inputBuilder.SetAttributeEntry("aPassword", "secret");
 inputBuilder.SetAttributeEntry("aHTML", "<html>bla</html>");
 inputBuilder.SetAttributeEntry("anXML", "<tag>text</tag>");
 inputBuilder.SetAttributeEntry("aDate", DateTime.Now);
 inputBuilder.SetAttributeEntry("aBinary", (Binary) null);
 inputBuilder.SetAttributeEntry("aPDF", (Binary)null);
 inputBuilder.SetAttributeEntry("anImage", (Binary)null);
 inputBuilder.SetAttributeEntry("aProperties", "name=value\nname2=value2");
 inputBuilder.SetAttributeEntry("aSession", (Session)null);
 inputBuilder.SetAttributeEntry("aCurrency", "USD");
 inputBuilder.SetAttributeEntry("aCountry", "US");
 inputBuilder.SetAttributeEntry("aLanguage", "en");
 inputBuilder.SetAttributeEntry("aRefindKey", "Never use this as input");

Kofax Kapow Developer's Guide

43

Notice that in the above example we have to cast null values, because the C# compiler can't otherwise
determine which of the overloaded version of SetAttributeEntry method we want to call. However
since unconfigured attributes will automatically be null, you never need to set null explicitly.

It is possible to specify the Attribute and AttributeType explicitly when creating input using the API.
This is approach is not recommended, but may be needed in rare cases, and would look like this.

Not recommended usage of setAttribute

 RqlObjectBuilder inputBuilder = request.CreateInputVariable("alltypes");
 inputBuilder.SetAttributeEntry(new AttributeEntry("anInt", "42",
 AttributeEntryType.Integer));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aNumber", "12.34",
 AttributeEntryType.Number));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aBoolean", "true",
 AttributeEntryType.Boolean));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aCharacter", "c",
 AttributeEntryType.Character));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aShortText", "some text",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aLongText", "a longer text",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aPassword", "secret",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aHTML", "<html>bla</html>",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("anXML", "<tag>text</tag>",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aDate",
 "2012-01-15 23:59:59.123", AttributeEntryType.Date));

 inputBuilder.SetAttributeEntry(new AttributeEntry("aBinary", null,
 AttributeEntryType.Binary));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aPDF", null,
 AttributeEntryType.Binary));
 inputBuilder.SetAttributeEntry(new AttributeEntry("anImage", null,
 AttributeEntryType.Binary));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aProperties",
 "name=value\nname2=value2", AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aCurrency", "USD",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aCountry", "US",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aLanguage", "en",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aRefindKey",
 "Never use this as input", AttributeEntryType.Text));

As we can see all attribute values must be provided in the form of strings. The string values are then
converted to the appropriate .NET objects based on the AttributeEntryType provided. This is only
useful if you build other generic APIs on top of the Kapow .NET API.

Execution Parameters

In addition to the CreateInputVariable method, the Request contains a number of properties that
controls how the robot executes on RoboServer.

Kofax Kapow Developer's Guide

44

Execution Control Methods on Request

MaxExecutionTime This property controls the maximum number of seconds
the robot can execute. When this time has elapsed the
robot will be stopped by RoboServer. The timer doesn't
start until the robot begins to execute, so if the robot is
queued on RoboServer this is not taken into account.

StopOnConnectionLost This property (true by default) controls if RoboServer
will stop the robot if it discovers that the connection to
the client application has been lost. You should have a
very good reason for setting this value to false - if your
code is not written to handle this, your application will not
perform as expected.

StopRobotOnApiException This property (true by default) instructs RoboServer to
stop the robot when the first API exception is raised. By
default most steps in a Robot will raise an API exception
if the step fails to execute - this is configured on the
steps error handling tab.
When set to false, the robot will continue to execute
regardless of API exceptions, however unless your
application is using a IRobotResponseHandler for
streaming the results, an exception will still be thrown by
Execute(), so be extremely careful when setting this to
false.

Username, Password These properties are used to set the credentials. This
is used when RoboServer is configured to require
authentication. When this option is enabled, the client
must provide credentials or RoboServer will reject the
request.

RobotLibrary This property is used to assign a RobotLibrary to the
request. A robot library instructs RoboServer where to
find the robot identified in the request. Later examples
will explore the various robot library types and when/how
to use them.

ExecutionId Allows you to set the executionId for this request. If
you don't provide one, RoboServer will generate one
automatically. The execution ID is used for logging, and
also needed if your client needs to be able to stop the
robot programmatically. The ID must be globally unique
(over time). If two robots use the same execution ID, the
logs will be inconsistent.
Setting this is useful if your robots are part of a larger
workflow and you already have a unique identifier in your
client application, as this allows you to easily join the
robot logs with the rest of the system.

Kofax Kapow Developer's Guide

45

setProject(String) This is used solely for logging purposes. The
Management Console uses this field to link log
messaged to project, so the log views can filter by
project.
If your application is not using the
RepositoryRobotLibrary you should probably set
this value to inform the RoboServer logging system
which project (if any) this robot belongs to.

Robot Libraries

In Design Studio robots are grouped into projects. If you look in the file system you will see that these
projects are represented by a folder with the only constraint that it must contain a folder named Library.

When you build the execute request for RoboServer, you identify the robot by a robot URL, like this:

Request request = new Request("Library:/Input.robot");

Here, Library:/ is a symbolic reference to a robot library, in which the RoboServer should look for the
robot. The RobotLibrary is then specified on the builder like this:

request.setRobotLibrary(new DefaultRobotLibrary());

There are three different robot library implementations, which one to select depends on you deployment
environment.

Robot Libraries

Library Type Description
DefaultRobotLibrary This configures RoboServer to look for the robot in

the current project folder. This folder is defined in the
Settings application.
If you have multiple RoboServers you will have to
deploy your robots on all RoboServers.
This robot library is not cached, so the robot is reloaded
from disk with every execution. This makes the
library usable in a development environment where
robots change often, but not suitable for a production
environment.

Kofax Kapow Developer's Guide

46

Library Type Description
EmbeddedFileBasedRobotLibrary This library is embedded in the execute request sent to

RoboServer. To create this library you must create a
zip file containing the robots and all its dependencies
(types, snippets and resources). This can be done the
Tools->Create Robot Library File menu in
Design Studio.
The library is sent with every request, which adds
some overhead for large libraries, but the libraries are
cached on RoboServer, which offers best possible
performance.
One strength is that robots and code can be deployed
as a single unit, which offers clean migration from QA
environment to production environment. However, if
the robots change often you will have to redeploy them
often.
You can use the following code to configure the
embedded robot library for your request.

var request = new Request
 ("Library:/Tutorials/NewsMagazine.
 robot");
 var stream = new FileStream
 ("c:\\embeddedLibrary.robotlib",
 FileMode.Open);
 request.RobotLibrary =
 new EmbeddedFileBasedRobotLibrary
 (stream);

Kofax Kapow Developer's Guide

47

Library Type Description
RepositoryRobotLibrary This is the most flexible RobotLibrary.

This library uses the Management Console's built-in
repository as a robot library. When you use this library,
RoboServer will contact the Management Console
which will send a robot library containing the robot and
its dependencies.
Caching occurs on a per robot basis, inside both
Management Console and RoboServer. Inside
Management Console, the generated library is
cached based on the robot and its dependencies. On
RoboServer, the cache is based on a timeout, so
it doesn't have to ask the Management Console for
each request. In addition, the library loading between
RoboServer and Management Console uses HTTP
public/private caching, to further reduce bandwidth.
If NewsMagazine.robot has been uploaded to the
Management Console we could use the repository robot
library like this when executing the robot:

var request = new Request
 ("Library:/Tutorials/NewsMagazine.
 robot");
 request.RobotLibrary =
 new RepositoryRobotLibrary
 ("http://localhost:50080",

 "Default Project", 60000);

This will instruct RoboServer to load the robot from a
local Management Console and cache it for one minute
before checking with the Management Console to see
if a new version of the robot (it's type and snippets) has
been changed.
In addition any resource loaded through the Library:/
protocol, will cause RoboServer request the resource
directly from the Management Console.

.NET Advanced

In this section we will look a little closer at some of the more advanced features on the API. These include
output streaming, logging and SSL configuration, as well as parallel execution.

Load Distribution

Lets look a little closer at what happens inside the RequestExecutor. The executor is given an array of
RoboServers. As the executor is constructed it tries to connect to each RoboServer. Once it is connected
it sends a ping request to each RoboServer to discover how the server is configured.

Kofax Kapow Developer's Guide

48

Load balanced executor

 RoboServer prod = new RoboServer("prod.kapow.local", 50000);
 RoboServer prod2 = new RoboServer("prod2.kapow.local", 50000);
 Cluster cluster = new Cluster("Prod", new RoboServer[]{ prod, prod2}, false);
 Request.RegisterCluster(cluster);

Lets look a little closer at what happens inside the RequestExecutor. The executor is given an array of
RoboServers. As the executor is constructed it tries to connect to each RoboServer. Once it is connected
it sends a ping request to each RoboServer to discover how the server is configured.

Load is distributed to each online RoboServer in the cluster, based on the number of unused execution
slots on the RoboServer. The next request is always distributed to the RoboServer with the most
available slots. The number of available execution slots is obtained through the initial Ping response, and
the executor keeps track of each robot it starts, and when it completes. The number of execution slots on
a RoboServer is determined by the max concurrent robots on the Servers tab.

If a RoboServer goes offline it will not receive any robot execution requests before it has successfully
responded to the ping request.

Two Client Rule
You should only have one API client using a given cluster of RoboServer. If you have multiple .NET
applications running robots against the same RoboServers, this will result in reduced performance.

Data Streaming

Sometimes you need to present the results from a robot execution in real-time, as the robot is executing.
In these cases you want the API to return the extracted values immediately instead of waiting for the robot
to finish its execution and access the RqlResult.

The API offers the possibility to receive a callback every time the API receives a value that was returned
by the Robot. This is done through the IRobotResponseHandler interface.

Response streaming usingAbstractFailFastRobotResponseHandler

 using System;
 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Repository.Construct;
 using Com.KapowTech.RoboSuite.Api.Construct;
 using System.IO;
 using Com.KapowTech.RoboSuite.Api.Engine.Hotstandby;

 namespace Examples
 {

 public class DataStreaming {

 public static void Main(String[] args) {

 var server = new RoboServer("localhost", 50000);
 var cluster = new Cluster("MyCluster", new RoboServer[] { server },
 false);
 Request.RegisterCluster(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 IRobotResponseHandler handler = new SampleResponseHandler();
 request.Execute("MyCluster", handler);

Kofax Kapow Developer's Guide

49

 }

 }

 public class SampleResponseHandler : AbstractFailFastRobotResponseHandler
 {
 override public void HandleReturnedValue(RobotOutputObjectResponse
 response, IStoppable stoppable)
 {
 var title = response.OutputObject["title"];
 var preview = response.OutputObject["preview"];
 Console.WriteLine(title + ", " + preview);
 }
 }
 }

The above example uses the second execute method of the Request, which expects a
RobotResponseHandler in addition to the name of the cluster to execute the robot on. In this example
we create a IRobotResponseHandler by extending AbstractFailFastRobotResponseHandler, which
provides default error handling, so we only need to handle the values returned by the robot.

The handleReturnedValue method is called whenever the API receives a returned value from
RoboServer. The AbstractFailFastRobotResponseHandler used in this example, will throw exceptions
in the same way as the non-streaming execute method. This means that an exception will be thrown in
response to any API exceptions generated by the robot.

The IRobotResponseHandler has several methods which can be grouped into 3 categories.

Robot life cycle events
Methods which are called when the robot's execution state change on RoboServer, such as when it starts
and finishes its execution.

Robot data events
Methods which are called when the robot returns data or errors to the API.

Additional error handling
Methods which are called either due to an error inside RoboServer or in the API.

RobotResponseHandler - robot life cycle events

Method name Description
void requestSent(RoboServer roboServer,
ExecuteRequest request)

Called when the RequestExecutor has found the
server which will execute the request.

void requestAccepted(String executionId) Called when the found RoboServer has accepted the
request and put it into it queue.

void RobotStarted(IStoppable stoppable) Called when the RoboServer begins to execute the
robot. This usually occurs immediately after the robot
has been queued, unless the RoboServer is under
heavy load, or used by multiple API clients.

Kofax Kapow Developer's Guide

50

Method name Description
void robotDone(RobotDoneEvent reason) Called when the robot is done executing on

RoboServer. The RobotDoneEvent is used to specify
if the execution terminated normally, due to an error, or if
it was stopped.

RobotResponseHandler - robot data events

Method name Description
void
HandleReturnedValue(RobotOutputObjectResponse
response, IStoppable stoppable)

Called when the robot has executed a Return Value
action and the value has been returned via the socket to
the API.

void HandleRobotError(RobotErrorResponse
response, IStoppable stoppable)

Called when the robot raises an API exception. Under
normal circumstances the robot will stop executing after
the first API exception. This behavior can be overridden
by using Request.StopRobotOnApiException =
false, in which case this method will be called multiple
times. This is useful if you want a data streaming robot to
continue to execute regardless of any generated errors.

void HandleWriteLog(RobotMessageResponse
response, IStoppable stoppable)

Called if the robot executes the Write Log action. This is
useful if you wish to provide additional logging info from
within a robot.

RobotResponseHandler - additional error handling

Method name Description
void HandleServerError(ServerErrorResponse
response, IStoppable stoppable)

Called if RoboServer generates an error, for instance
if the server is too busy to process any requests, or if an
error occurs inside RoboServer which prevents it from
starting the robot.

void handleError(RQLException e,
IStoppable stoppable)

Called if an error occurs inside the API. Most commonly
if the client loses the connection to RoboServer.

Many of the methods will include a IStoppable object, this object can be used to stop for instance in
response to a specific error or value returned.

Some of these methods allow you to throw an RQLException, if you do this you should be aware of
the consequences. The thread that calls the handler is the thread that calls Request.Execute(), this
means that any exceptions thrown will bubble up the call stack and out the execute method. If you throw
an exception in response to handleReturnedValue, handleRobotError or handleWriteLog it is your
responsibility to invoke Stoppable.stop(), or the robot may continue to execute even though the call to
Request.Execute() has completed.

Data streaming is most often used in one of the following use cases.
▪ Ajax based web application, where results are presented to the user in real-time. If data was not

streamed results could not be shown until the robot was done running.

Kofax Kapow Developer's Guide

51

▪ Robots that return so much data that the client would not be able to hold it all in memory throughout the
robots execution.

▪ Processes that need to be optimized so the extracted values are processed in parallel with the robot
execution.

▪ Processes that store data in databases in a custom format.
▪ Robots that should ignore or require custom handling of API exceptions (see below).

Response and error collecting using AbstractFailFastRobotResponseHandler:

 using System;
 using System.Collections;
 using System.Collections.Generic;
 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Repository.Construct;
 using Com.KapowTech.RoboSuite.Api.Construct;
 using System.IO;
 using Com.KapowTech.RoboSuite.Api.Engine.Hotstandby.Interfaces;

 namespace Examples
 {
 public class DataStreaming
 {

 public static void Main(String[] args)
 {

 var server = new RoboServer("localhost", 50000);
 var cluster = new Cluster("MyCluster", new RoboServer[] { server },
 false);
 Request.RegisterCluster(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.StopRobotOnApiException = false; // IMPORTANT!!

 ErrorCollectingRobotResponseHandler handler =
 new ErrorCollectingRobotResponseHandler();
 request.Execute("MyCluster", handler); // blocks until robot is
 done, or handler throws an exception

 Console.WriteLine("Extracted values:");
 foreach (RobotOutputObjectResponse response in handler.
 GetOutput())
 {
 var title = response.OutputObject["title"];
 var preview = response.OutputObject["preview"];
 Console.WriteLine(title + ", " + preview);
 }

 Console.WriteLine("Errors:");
 foreach (RobotErrorResponse error in handler.GetErrors())
 {
 Console.WriteLine(error.ErrorLocationCode + ", " + error.
 ErrorMessage);
 }
 }
 }

 public class ErrorCollectingRobotResponseHandler :
 AbstractFailFastRobotResponseHandler {

 private IList<RobotErrorResponse> _errors =
 new List<RobotErrorResponse>();
 private IList<RobotOutputObjectResponse> _output =
 new List<RobotOutputObjectResponse>();

 override public void HandleReturnedValue(RobotOutputObjectResponse

Kofax Kapow Developer's Guide

52

 response, IStoppable stoppable) {
 _output.Add(response);
 }

 override public void HandleRobotError(RobotErrorResponse response,
 IStoppable stoppable) {
 // do not call super as this will stop the robot
 _errors.Add(response);
 }

 public IList<RobotErrorResponse> GetErrors() {
 return _errors;
 }

 public IList<RobotOutputObjectResponse> GetOutput() {
 return _output;
 }
 }
 }

The example above shows how to use a IRobotResponseHandler that collects returned values and
errors. This type of handler is useful if the robot should continue to execute even when error are
encountered, which can be useful if the website is unstable and occasionally times out. Notice that
only robot errors (API exceptions) are collected by the handler, if the connection to RoboServer is lost
Request.Execute() will still throw an RQLException (and the robot will be stopped by RoboServer).

For more details check the IRobotResponseHandler documentation in the /docs folder .

SSL

The API communicates with RoboServer through an RQLService. The RQLService is a RoboServer
component which listens for API requests on a specific network port. When you start a RoboServer you
specify if the RoboServer should use the encrypted SSL service, or the plain socket service, or both
(using two different ports). All RoboServers in a cluster must be running the same RQLService (although
the port may be different).

Assuming we have started a RoboServer with the SSL RQLService on port 50043, like this

RoboServer -service ssl:50043

We can use the following code:

 RoboServer server = new RoboServer("localhost", 50043);
 boolean ssl = true;
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, ssl);
 Request.RegisterCluster(cluster);

All we need to do is to create the cluster as an SSL cluster and specify the SSL port used by each
RoboServer. Now all communication between RoboServer and the API will be encrypted.

In addition to data encryption, SSL offers the possibility to verify the identity the remote party. This type of
verification is very important on the Internet, as rouge Web sites could otherwise pretend to be someone
they are not. Most often your API client and RoboServers will be on the same local network, so you rarely
need to verify the identity of the other party, but the API supports this feature should it become necessary.

Check here to find out how to compile and run the included SSL example.

Kofax Kapow Developer's Guide

53

Repository Integration

In the Management Console you also specify cluster of RoboServers, these are used to execute
scheduled robots, as well as robots executed as REST services. The API allowed you to use
the RepositoryClient to obtain cluster information from Management Console, check the
RepositoryClient documentation for details.

Repository Integration
using System;
 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Construct;
 using Com.KapowTech.RoboSuite.Api.Repository.Engine;

 namespace Examples
 {
 public class RepositoryIntegration
 {
 public static void Main(String[] args)
 {
 string userName = "admin";
 string password = "admin";
 RepositoryClient client = new RepositoryClient
 ("http://localhost:50080", userName, password);

 Request.RegisterCluster(client, "Production");
 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 var result = request.Execute("Production");
 Console.WriteLine(result.ToString());
 }
 }
 }

The above example shows how to create a RepositoryClient which connects to a Management
Console deployed on localhost port 50080.

If the Management Console requires authentication you will need to pass a username and password,
otherwise you may pass null for both. When we register the RepositoryClient we specify the name
of a cluster which exists on the Management Console, this will then query the Management Console
to get a list of RoboServers configured for this cluster, and check every 2 minutes to see if the cluster
configuration has been updated on the Management Console

This integration allows you to create a cluster on Management Console that you can change dynamically
using the Management Console user interface. When you use a Management Console cluster with the
API usage should be exclusive, and you should not use it for scheduling robot, as this would break the
two client rule.

Executor Logger

When you execute a request, the execute method will throw an exception if a robot generates an error.
Other types of errors and warnings are reported through the ExecutorLogger interface. In the previous
examples, we have not provided any ExecutionLogger when executing robots, which means we get the
default implementation that will write to system out. Let's see how the ExecutorLogger will report if one of
our RoboServers goes offline.

The example configures a cluster with a RoboServer which is not online.

Kofax Kapow Developer's Guide

54

ExecutorLogger, offline server example:

 RoboServer rs = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("name", new RoboServer[]{rs}, false);
 Request.RegisterCluster(cluster);

If you run this example if should print the following to the console.

ExecutorLogger, offline RoboServer console output:

 RoboServer[Host=localhost, Port=50000]' went offline.
 Com.KapowTech.RoboSuite.Api.Engine.UnableToConnectException:...........

Often you don't want to have your application writing directly to System.out, in that case you can provide
a different IExecutorLogger implementation, you can do so when registering the cluster, like this

Use DebugExecutorLogger:
Request.RegisterCluster(cluster, new DebugExecutorLogger());

This example uses the DebugExecutorLogger() which will also print to System.out, but only if the API
debugging is enabled. Alternative you can provide your own implementation of the ExecutorLogger, to
control how error messages should be handled.

Under the Hood

This section will explain what is going on under the hood when you register a cluster and execute a
Request.

When you register a Cluster with the Request, a RequestExecutor is created behind the scene. This
RequestExecutor is stored in a Map using the cluster name as key. When a request is executed the
provided cluster name is used to find the associated RequestExecutor and execute the request.

Lets look at a short example.

Normal Execution

 public static void Main(String[] args)
 {
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 Request.RegisterCluster(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();
 var result = request.Execute("MyCluster");
 Console.WriteLine(result);
 }

Now lets write the same example by using the hiddenRequestExecutor directly.

Under the Hood Execution

 public static void Main(String[] args)
 {
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);

Kofax Kapow Developer's Guide

55

 RequestExecutor executor = new RequestExecutor(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();
 var result = executor.Execute(request);
 Console.WriteLine(result);
 }

The reason the RequestExecutor is hidden by default, is so you don't have to keep track of it. You may
only create one RequestExecutor per cluster, so if you use it directly you need to store a reference to it
throughout your application. Using Request.RegisterCluster(cluster) means that you can blissfully
ignore the RequestExecutor and lifecycle rules.

The RequestExecutor contains the necessary state and logic which provides the load balancing and
failover features. Using the RequestExecutor directly also offers a few extra features, which we will look
at.

Request Executor Features

When the RequestExecutor is not connected to a repository, you can dynamically add remove
RoboServers, by calling AddRoboServer(..) and RemoveRoboServer(..). These methods modifies the
distribution list used inside the RequestExecutor.

RequestExecutor.TotalAvailableSlots property contains the number of unused execution slots
across all RoboServers in the internal distribution list.

By using these methods you can dynamically add RoboServers to your RequestExecutor once the
number of available execution slots becomes low.

When you create the RequestExecutor you may optionally provide an IRqlEngineFactory. The
IRqlEngineFactory allows you to customize which RQLProtocol is used when connecting to a
RoboServer. This is only needed under very rare circumstances, for instance if you want use a client
certificate to increase security, check API Client Certificates for details.

Repository API

The Repository API allows you to query the Management Console's Repository to get a list of projects,
robots and the input required to call a robot. It also allows you to programmatically deploy robots, types
and resource files.

Repository Client

Communication with the repository is achieved through the RepositoryClient found in the namespace
Com.KapowTech.RoboSuite.Api.Repository.Engine

Let's look at an example .

Get Projects from Repository

 string UserName = "admin";
 string Password = "admin1234";
 RepositoryClient client = new RepositoryClient("http://localhost:50080/", UserName, Password);

Kofax Kapow Developer's Guide

56

 Project[] projects = client.GetProjects();
 foreach(Project p in projects) {
 Console.WriteLine(p);
 }

Here we see a RepositoryClient configured to connect to Management Console's repository on
http://localhost:50080/ with a username and password. If the Management Console is not password
protected, you must supply null for user name and password.

Once the RepositoryClient is created, we use the GetProjects() method to query the
repository for a list of projects. Notice that when calling any of the RepositoryClient methods, a
RepositoryClientException will be thrown if an error occurs.

The RepositoryClient has the following eleven methods

Methods of the RepositoryClient:

Method signature Description
void DeleteResource(string projectName,
string resourceName, boolean silent

Deletes a resource from a project. The resourceName
argument uses the full path of the resource.

void DeleteRobot(string projectName,
string robotName, boolean silent)

Deletes a robot from a project. The robotName
argument uses the full path of the robot.

void DeleteType(string projectName, string
typeName, boolean silent)

Deletes a type from a project. The typeName argument
uses the full path of the type.

void DeleteSnippet(string projectName,
string snippetName, boolean silent)

Deletes a snippet from a project. The snippetName
argument uses the full path of the snippet.

void DeployLibrary(string projectName,
EmbeddedFileBasedRobotLibrary library,
boolean failIfExists)

Deploys a library to the server. Robots, types and
resources will be overridden unless failIfExists is
true.

void DeployResource(string projectName,
string resourceName, byte[] resourceBytes,
boolean failIfExists)

Deploys a resource to a project. If a resource with the
given name already exist it can be overridden by setting
failIfExists to false. The resourceName argument
uses the full path of the resource.

void DeployRobot(string projectName,
string robotName, byte[] robotBytes,
boolean failIfExists)

Deploys a robot to a project. If a robot with the given
name already exist it can be overridden by setting
failIfExists to false. The robotName argument
uses the full path of the robot.

void DeployType(string projectName, string
typeName, byte[] typeBytes, boolean
failIfExists)

Deploys a type to a project. If a type with the given
name already exist it can be overridden by setting
failIfExists to false. The typeName argument uses
the full path of the resource.

void DeploySnippet(string projectName,
string snippetName, byte[] snippetBytes,
boolean failIfExists)

Deploys a snippet to a project. If a snippet with the
given name already exist it can be overridden by setting
failIfExists to false. The snippetName argument
uses the full path of the snippet.

Project[] GetProjects() Returns the projects that exist in this repository
Cluster[] GetRoboServerClusters() Returns a list of clusters and online(valid) RoboServers

that are registered with the Management Console
running the repository.

Kofax Kapow Developer's Guide

57

Method signature Description
Cluster[] GetRoboServerClusters(boolean
onlineRoboServer)

Returns a list of clusters and Roboservers that are
registered with the Management Console. Use
onlineRoboServer flag to indicate if the clusters should
include only the online or all of the RoboServers.

Cluster AddRoboServer(String clusterName,
int portNumber, String host)

Adds a new RoboServer to a cluster.

Robot[] GetRobotsInProject(String
projectName)

Returns the full paths of robots available in the project.

RobotSignature GetRobotSignature(String
projectName, String robotName)

Returns the robot signature with the full path of the robot,
as well as the input variables required to execute this
robot and a list of the types it may return or store.

RepositoryFolder
GetProjectInventory(String projectName)

Returns the entire tree of folders and files from the
repository.

RepositoryFolder GetFolderInventory(String
projectName, String folderPath)

Returns the folders and files of the sub folder in the
specified project from the repository.

RepositoryFolder GetFileInventory(String
projectName, String folderPath, String
fileName, RepositoryFile.Type fileType)

Gets the file and the referenced files from the
management console. Remark, the file inventory is
wrapped in a RepositoryFolder, to get references.

Void DeleteFile(RepositoryFile file, bool
silent)

Deletes the specified file from the repository.

Date GetCurrentDate() Returns current date and time of the Management
Console.

byte[] GetBytes(RepositoryFile file) Returns the size in bytes of the specified file in the
repository.

ComputeChecksum(byte[] bytes) Returns the checksum of the specified file to verify data
integrity.

void UpdateFile(RepositoryFile file,
byte[] bytes)

Updates the specified file in the repository with new
bytes.

void MoveFile(RepositoryFile sourceFile,
String destFolderPath)

Moves the specified file from the repository to a folder
specified in destFolderPath.

void RenameRobot(RepositoryFile robotFile,
String newName)

Renames the specified robot file.

void DeleteFolder(String projectName,
String folderPath)

Deletes the specified folder in the repository.

void DeleteRoboServer(String clusterName,
RoboServer roboServer)

Deletes a RoboServer.

Kofax Kapow Developer's Guide

58

Method signature Description
Map<String, String> getInfo() Returns information about the Management Console and

the Repository API
The method returns a mapping of the following:
▪ "application" to the version of the Management

Console containing major, minor and dot version, for
example, 10.0.0

▪ "repository" to the ID of the latest DTD used
by the Repository API, for example, //Kapow
Technologies//DTD Repository 1.5//EN

▪ "rql" to the ID of the latest DTD used by the Robot
Query Language API, for example, //Kapow
Technologies//DTD RoboSuite Robot Query
Language 1.13//EN

Note The full path is relative to your project folder.

Check the .Net documentation for details. The .Net documentation is located inside you Kapow
installation at /API/robosuite-dotnet-api/docs/RoboSuite .NET API.chm.

If authentication is enabled on the repository, the request may be declined if the credentials given doesn't
have sufficient access.

The repository is accessed via http. When using the .Net version of the Repository API, any proxy servers
configured for Internet Explorer will be used by the Repository API.

Deployment via Repository Client

The following example shows how to deploy a robot and a type from the local file system using the
RepositoryClient

Deploying to Repository
string user = "test";
 string password = "test1234";
 RepositoryClient client = new RepositoryClient("http://localhost:50080", user,
 password);

 byte[] robotBytes = File.ReadAllBytes("c:\\MyRobots\\Library\\Test.robot");
 byte[] typeBytes = File.ReadAllBytes("c:\\MyRobots\\Library\\Test.type");

 // we assume that no one has deleted the Default project
 client.deployRobot("Default project", "Test.robot", robotBytes, true);
 client.deployType("Default project", "Test.type", typeBytes, true);

Repository API as Rest

The repository can also be accessed via restful services.

Kofax Kapow Developer's Guide

59

Examples

The Kapow installation contains six additional API code examples, these examples are found in API
\robosuite-dotnet-api\example.

After completing these steps, both the server and client will be configured to use SSL Running
RunSslRobot.exe can be used to verify the configuration.

Compiling & Running the Examples
To compile the examples run the build.bat from a command prompt. This will cause six .exe files to be
produced, which can be run directly.

The .exe files are relying on the robosuite-dotnet-api.dll and the log4net.dll both of which are
located in the examples directory. Both files are identical copies of the ones located in the bin folder and
are copied in here to make it easier to run the examples.

Each example program will print a small usage text when run without any arguments.

C# Compiler Issues
The build.bat file assumes that the C# compiler is available in the path.

.NET Framework 4.0
The API and accompanying log4net is build targeting the .net framework 4.0 client profile. For details on
the .net framework 4.0 client profile seehttp://msdn.microsoft.com/en-us/library/cc656912.aspx

SSL Example
To run the SSL example RunSslRobot.exe the RoboServer has to be configured to use ssl and the
certificate has to be imported on the client machine. This guide will show you how to configure ssl using a
self-signed certificate on a windows PC running a local RoboServer.

Configure the RoboServer
1. On the RoboServer start the Settings application located in Start -> All Programs -> Kapow
2. In the Settings application goto the certificates tab
3. Click change and select the file API\robosuite-dotnet-api\example\server.pfx
4. When prompted for a password type 123.

Configure the API Client
1. Run the command mmc.exe
2. On the Console menu, click Add/Remove Snap-in
3. Under Snap-in, double-click Certificates, and select to manage certificates for the local computer

and click Finish

Kofax Kapow Developer's Guide

60

4. With the certificates snap-in loaded expand the node Certificates -> Trusted root Certification
Authorities and right click the Certificates node and click the menu item All tasks -> Import

5. This will start the Certificate Import Wizard. When prompted to pick the certificate file, browse to API
\robosuite-dotnet-api\example\server.pub.cer and complete the import.

61

Chapter 3

Kapow Control Protocol

Kapow Control Protocol or KCP is an execution protocol for executing Robots over Java Message Service
(JMS), using Google Protocol Buffers (Protobuf).

The KCP protocol defines a set of messages that enable you to communicate with a RoboServer. The
following messages are defined.

Message Direction Notes Queue/Topic
Message both A container, wrapping all

the following messages.
All

ExecuteRobot sending Includes robot url for
RS to get robot from the
repository.

Execute

StopRobot sending Sent to interrupt a running
robot.

Control

RobotEvent receiving (START_REQUESTED
STARTED,
STOP_REQUESTED,
STOPPED, FAILED;
ENDED)

Result

ServerMessage receiving Either info or error from the
server regarding a run.

Result

RobotResult receiving A Robot Result is send
every time a return value
step is executed in the
robot.

Result

RobotRunStatus receiving Summary of run including
the number of returned
RobotResult messages.

Result

KCP communicates over three so called JMS Destinations listed in the following table.

Name Destination type Description
Execute Queue Messages to a RoboServer
Result Queue Information from RoboServers
Control Topic Broadcast to all RoboServers

The following is an example of a normal KCP life cycle.
1. An ExecuteRobot message is sent. When the message is picked up by a RoboServer, it sends a

RobotEvent (START_REQUESTED) that informs you which RoboServer is handling the execution.

Kofax Kapow Developer's Guide

62

2. START_REQUESTED is followed by a RobotEvent (STARTED). During the execution, the robot
might send multiple RobotResults that you can pick up from the result queue.

3. When the robot stops, it sends a RobotEvent (ENDED) and a RobotRunStatus that informs you
about how many results were returned.

Build a JMS Client

To use KCP you must set up the following components.
▪ Kapow JMS client that includes the following components:

▪ Management Console
▪ RoboServer
▪ JMS broker

▪ A JMS client api In your language (see http://activemq.apache.org for more information)
▪ The protocol definition file (kcp.proto).
▪ The Protocol Buffers compiler version 3 (proto3) that you can download from https://github.com/google/

protobuf/releases (see https://developers.google.com for more information).
▪ The latest version of the Protobuf.jar file.

In the following tutorials we use Java, and ActiveMQ Client to connect to the JMS broker.
▪ KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message
▪ KCP Tutorial 2: Consume Specific Results
▪ KCP Tutorial 3: Stop Robot Execution

KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message

In this tutorial we will compile KCP, connect to a JMS broker, and send a message. The resulting code
can be found in the Tutorial1.java file.

Prerequisites
▪ Install Protobuf compiler.
▪ Use a programming language that supports Protobuf and JMS. In this tutorial we use Java.
▪ Set up the language dependent Protobuf library. In this tutorial: Java protobuf.jar.
▪ Set up and start ActiveMQ JMS message broker.

Step 1. Create the language dependent KCP definition
From the command line run the compiler with the following parameters:
protoc --java_out=[DestinationFolder] kcp.proto

The above command creates com.kapowtech.kcp Java package structure in the destination folder with a
single file called Kcp.java. Do not change this file, it is simply a helper to create the Protobuf objects. The
package must be included in your tutorial project.

http://activemq.apache.org
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://developers.google.com

Kofax Kapow Developer's Guide

63

Step 2. Connect to the broker
A broker can be configured to connect in many different ways, such as using credentials and certificates.
In this example we assume a standard configuration of the broker, where anonymous access is allowed.
To connect we only need a broker URI.
public void run() {
try {
//Create a ConnectionFactory
ActiveMQConnectionFactory
connectionFactory = new
ActiveMQConnectionFactory(BROKER_URI)#
//Create a Connection
Connection connection = connectionFactory.createConnection()#
connection.start()#
//Create a Session
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE)#

The code above connects to the broker and creates a session.

Step 3. Connect to the execution queue
On this step we connect to a queue to send a message. The queue name must include the same
namespace and cluster as the RoboServer. The execution queue name consists of the following.
[NAMESPACE].KCP.[CLUSTER_NAME].Execute

For example, Kapow.KCP.Production.Execute.
private final String NAMESPACE = "Kapow" # // Must match the namespace used by the RoboServer
private final String ENCODING = "KCP" # // Must be KCP
private final String CLUSTER = "Production" # // Must match the cluster used by the RoboServer
private final String EXECUTE = "Execute" #
private final String EXECUTE_QUEUE = NAMESPACE + "." + ENCODING + "." + CLUSTER + "." +
EXECUTE #
...
//Create the destination (Topic or Queue)
Destination destination = session.createQueue(EXECUTE_QUEUE)#

The code above creates a queue if it does not exist.
When the queue is created, we add a producer and send the first message.
//Create a MessageProducer from the Session to the Topic or Queue
MessageProducer producer = session.createProducer(destination)#
producer.setDeliveryMode(DeliveryMode. PERSISTENT)#
//Create a message
Kcp.Message kcpMessage = createExecuteRobotMessage()# //we will get to this later
BytesMessage jmsMessage = session.createBytesMessage()#
jmsMessage.writeBytes(kcpMessage.toByteArray())#
jmsMessage.setStringProperty("version" , "1")#
//Tell the producer to send the jms message
producer.send(jmsMessage)#

When sending messages to Kapow using JMS, you must set a version property on the JMS message.
The version is the version of the KCP message format and is currently 1.
jmsMessage.setStringProperty("version", "1")#

Step 4. Create a KCP execute message
To create an ExecuteRobot message, use ExecuteRobot and Message classes generated from
kcp.proto on Step 1. The message requires a robot url and a unique execution id. The URL must refer to
the robot in a Management Console repository as in the following example.
http://[user]:[pass]@[host]:[port]/[MCName]?project=[project name]&robot=[robotname]

Kofax Kapow Developer's Guide

64

Code example
private final String REPOSITORY = "http://admin:admin@localhost:8080/ManagementConsole" #
private final String PROJECT = "Default project" #
private final String ROBOT = "MyTutorialRobot.robot" #
private String executionId = UUID. randomUUID().toString()# // Must be unique across all clusters
 and time
...
// Create a RobotExecution message wrapped in a Message structure for sending.
private Kcp.Message createExecuteRobotMessage() {
Kcp.ExecuteRobot executeRobot = Kcp.ExecuteRobot. newBuilder()
.setRobotUrl(REPOSITORY + "?project=" + PROJECT + "&robot=" + ROBOT)
.setExecutionId(executionId)
// .setInput(createInputObjects()) //we will get to this in next step
.build()#
return Kcp.Message. newBuilder()
.setExecuteRobot(executeRobot)
.build()#
}

Refer to the code example for variables, boilerplate and context.

Step 5. Adding input objects
If you want to run robots using inputObjects, they need to be added to the KCP. In the following example
we create a MyTutorialType named myTutorialObject with three attributes as an input object.
/**
*Create the test input object myTutorialObject of the type MyTutorialType
* @return an input object
*/
private Kcp.Structure createInputObjects() {
//create a map of 3 attributes for the myTutorialObject
Map<String, Kcp.Value> attributes = new HashMap<>()#
attributes.put("myInteger" , kcp.Value. newBuilder().setInteger(42).build())#
attributes.put("myString" , Kcp.Value. newBuilder().setString("").build())#
attributes.put("myDate" , Kcp.Value. newBuilder().setTimestamp(System.
 currentTimeMillis()).build())#
//wrapping of attributes in structure
Kcp.Structure myTutorialObjectStructure = Kcp.Structure. newBuilder()
.putAllElements(attributes)
.build()#
//Create a map of all the input objects in this case just a single object
Map<String, Kcp.Value> inputObjects= new HashMap<>()#
//add myTutorialObject to the input object map.
inputObjects.put("myTutorialObject" ,
Kcp.Value. newBuilder().setStructure(myTutorialObjectStructure).build())#
Return Kcp.Structure. newBuilder()
.putAllElements(inputObjects)
.build()#
}

After input objects are specified, we need to go back to the createExecuteRobotMessage and add the
input as follows.
private Kcp.Message createExecuteRobotMessage() {
ExecuteRobot executeRobot = ExecuteRobot. newBuilder()
.setRobotUrl(REPOSITORY + "?project=" + P ROJECT + "&robot=" + ROBOT)
.setExecutionId(executionId)
.setInput(createMyInputs())
.build()#
return Kcp.Message. newBuilder()
.setExecuteRobot(executeRobot)
.build()#
}

Now you can send execute messages that start robot runs. The next step is to retrieve the robot results.

Kofax Kapow Developer's Guide

65

Step 6: Receiving robot results
A robot run can return RobotResults, RobotRunStatus and RobotEvent messages during its execution.
To receive messages we need to set up a consumer on the result queue. The consumer picks messages
off the queue as they arrive, and delegate further work. The queue is named the same way as the
execute queue.
[NAMESPACE].KCP.[CLUSTER_NAME].Result

For example, Kapow.KCP.Production.Result.
In this example the consumer runs in a separate thread and keeps consuming until stopConsumer() is
called. This specific consumer consumes all messages on the result queue. You can use this if you do not
need to hand the results back to the specific executor. In KCP Tutorial 2: Consume Specific Results we
set up an execution ID for specific consumer.
In the following code we set up a connection and a consumer for the result queue.
public void run() {
try {
//Create a ConnectionFactory
ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory(BROKER_URI)#
//Create a Connection
Connection connection = connectionFactory.createConnection()#
connection.start()#
connection.setExceptionListener(this)#
//Create a Session
Session session = connection.createSession(false , Session. AUTO_ACKNOWLEDGE)#
//Create the destination
Destination destination = session.createQueue(RESULT_QUEUE)#
//Create a MessageConsumer from the Session to the Topic or Queue
MessageConsumer consumer = session.createConsumer(destination)#
...

Then we add the main consume loop where we consume the messages and parse them depending on
the type of a message.
...
while (consume) {
// Wait for a message for 1 second
Message message = consumer.receive(1000)#
if (message instanceof BytesMessage) {
BytesMessage m = (BytesMessage) message#
byte [] bytes = new byte [(int) m.getBodyLength()]#
m.readBytes(bytes)#
Kcp.Message kcpMessage = Kcp.Message. parseFrom(bytes)#
System. out.print("from sender: " + kcpMessage.getSenderId() + ": ")#
switch (kcpMessage.getKindCase()){
case ROBOT_EVENT:
System. out.println("RobotEvent: " + kcpMessage.getRobotEvent().getType().name())#
break #
case ROBOT_RESULT:
handleResult(kcpMessage.getRobotResult())#
break #
case SERVER_MESSAGE:
System. out.println("Server Message: " +kcpMessage.getServerMessage().getMessage())#
break #
case ROBOT_RUN_STATUS:
System. out.println("RobotRunStatus Message: returned objects: "
+kcpMessage.getRobotRunStatus().getLatestResultIndex())#
break #
default :
System. out.println("unknown Message: " +kcpMessage.getKindCase().name())#
}
}
}
...

Kofax Kapow Developer's Guide

66

The final handling of the returned data is simply unpacking the KCP object. In this example we just print
the result to the output stream.
/**
* prints out a given result
* @param result
*/
private void handleResult(Kcp.RobotResult result){
Kcp.Structure output =result.getOutput()#
System. out.println("Result: object type: " + output.getTypeName() + " index: " +
 result.getIndex())#
for (String key: output.getElements().keySet()) {
Kcp.Value value = output.getElements().get(key)#
System. out.print(" \t " +value)#
}
}

All the above examples together give you a code that can build an input object, execute a robot, and get
returned events and results from the robot.

KCP Tutorial 2: Consume Specific Results

This is a modification of KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message
and shows a different approach to consumption of messages. The source code can be found in
Tutorial2.java.

If you want to extract messages related to your execution, instead of a global consumer use message
selectors. Each message sent to the result queue has a message property with an execution ID. You can
setup a consumer for a specific execution ID with a message selector like the following.
session.createConsumer(destination, "executionId='"+_executionId+"'")#

Note More complex selectors can be created using the SQL92 condition format.

...
// Create the destination
Destination destination = session.createQueue(RESULT_QUEUE)#
// Create a MessageConsumer from the Session to the Topic or Queue
MessageConsumer consumer = session.createConsumer(destination, "executionId = '" + _executionId +
 "'")#
while (consume) {
...

With the message selector, only messages related to the specific executionId are handled by the
consumer.

In KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message we set up a global
consumer. Now we move the initialization of the consumer into the run method of the producer and pass
the executionId to the consumer as follows.
...
public static class TutorialProducer implements Runnable {
...
public void run() {
//Start the consumer,
Consumer consumer = new Consumer(executionId)#
thread(consumer, "Consumer thread")#
...

Finally we stop the consumer when we receive a RobotEvent.ENDED message.
...

Kofax Kapow Developer's Guide

67

switch (kcpMessage.getKindCase()){
case ROBOT_EVENT:
System. out.println("RobotEvent: " + kcpMessage.getRobotEvent().getType().name())#
if (kcpMessage.getRobotEvent().getType() == Kcp.RobotEvent.Type. ENDED) {
stopConsumer()#
}
break #
...

Running the code from KCP Tutorial 2: Consume Specific Results starts a producer that creates a
consumer for your run. The consumer consumes all messages related to your run and closes down when
the robot stops executing.

KCP Tutorial 3: Stop Robot Execution

Stopping a robot is a little different compared to the JMS communication in Tutorial 1 and Tutorial 2,
because the StopRobot message is broadcasted to all RoboServers over a JMS Topic.

To connect to a topic is similar to connecting to a queue. The only difference is that we call the
session.createTopic(name) instead of session.createQueue() as in the following example.
public void run() {
try {
// Create a ConnectionFactory
ActiveMQConnectionFactory connectionFactory = new ActiveMQConnectionFactory(BROKER_URI)#
// Create a Connection
Connection connection = connectionFactory.createConnection()#
connection.start()#
// Create a Session
Session session = connection.createSession(false , Session. AUTO_ACKNOWLEDGE)#
// Create the destination
Destination destination = session.createTopic(TOPIC)#
// Create a MessageProducer from the Session to the Topic or Queue
MessageProducer producer = session.createProducer(destination)#
producer.setDeliveryMode(DeliveryMode. PERSISTENT)#
// Create a messages
Kcp.Message kcpMessage = createStopRobotMessage()#
...

The rest of the connection setup is the same as for execute message.

When building a Stop Message all we need is the executionId as follows.
private Kcp.Message createStopRobotMessage() {
Kcp.StopRobot stopRobot = Kcp.StopRobot. newBuilder().setExecutionId(executionId).build()#
return Kcp.Message. newBuilder()
.setStopRobot(stopRobot)
.build()#
}

When a RoboServer receives a Stop message, it stops the robot after the current step is executed and
sends back a RobotEvent over the Result queue.

	Title Page
	Table of Contents
	Introduction to Programming with Robots
	Getting Help for Kofax Products

	Java Programmer's Guide
	Java Basics
	First Example
	Robot Input
	Attribute Types
	Execution Parameters
	Robot Libraries

	Java Advanced
	Load Distribution and Failover
	Two Client Rule

	Executor Logger
	Data Streaming
	SSL
	Parallel Execution
	Repository Integration

	Under the Hood
	RequestExecutor Features
	Web Applications

	API Debugging
	Repository API
	Dependencies
	Repository Client
	Deployment via Repository Client
	Repository Rest API

	.NET Programmer's Guide
	.Net Basics
	First Example
	Robot Input
	Attribute Types
	Execution Parameters
	Robot Libraries

	.NET Advanced
	Load Distribution
	Two Client Rule

	Data Streaming
	SSL
	Repository Integration
	Executor Logger

	Under the Hood
	Request Executor Features

	Repository API
	Repository Client
	Deployment via Repository Client
	Repository API as Rest

	Examples
	Compiling & Running the Examples
	C# Compiler Issues
	.NET Framework 4.0
	SSL Example
	Configure the RoboServer
	Configure the API Client

	Kapow Control Protocol
	Build a JMS Client
	KCP Tutorial 1: Compile KCP, Connect to JMS Broker, and Send a Message
	KCP Tutorial 2: Consume Specific Results
	KCP Tutorial 3: Stop Robot Execution

