
Kofax Communications Manager
Core Developer's Guide
Version: 5.5.0

Date: 2021-06-07

© 2013–2021 Kofax. All rights reserved.

Kofax is a trademark of Kofax, Inc., registered in the U.S. and/or other countries. All other trademarks
are the property of their respective owners. No part of this publication may be reproduced, stored, or
transmitted in any form without the prior written permission of Kofax.

Table of Contents
Preface...6

Related documentation...6
Getting help with Kofax products...7

Chapter 1: Introduction to the functionality...9
Chapter 2: KCM Core Services..10

Add a Service to create a script.. 10
Chapter 3: Requirements for printer drivers..11

Amyuni printer drivers.. 11
Reinstall Amyuni printer drivers.. 11
Switch to an older Amyuni version... 12

Chapter 4: Log and setup reports.. 13
Watcher and CM Document Processor Manager log.. 13
Change the size limit of the log file... 13
Error messages.. 14

Location of the log files... 14
Read performance statistics from logs.. 16

STATS: lines processing..17
Chapter 5: Notifications..19
Chapter 6: Monitor and Watcher... 21

Monitor functionality..21
Monitor application...21
HTTP Monitor application.. 22

Watcher functionality...22
Chapter 7: Security issues...23

External interface..23
Grant or restrict network access... 23

Adjust internal interface settings.. 24
Chapter 8: Job recovery...25

Component Object Model resources for job recovery... 25
Chapter 9: Document composition... 26

Environments.. 26
ITPRun command...26

Use a rep:/ URl to create a document..26
Keys and extra parameters... 27

3

Kofax Communications Manager Core Developer's Guide

Enable DisablePostIncludes.. 28
Specify the environment.. 28
IBM i connection parameters.. 28
Data Backbone XML setting..29
OutputMode setting..29
Master Templates running in a sandbox content.. 30
Closed Loop Identifier..31

RunDocumentPackTemplate Service... 31
RunMdl Service.. 32
Test a template...32

Chapter 10: KCM Core scripts...34
Create and deploy a Core scripting library..34

Chapter 11: Job scheduling...38
Scheduled jobs... 38
Exit points... 38
Downtime and clock changes.. 38
Time zones and daylight saving time.. 39
Interactive scheduling... 39
Jobs scheduling on all KCM Document Processors..39

Chapter 12: Integration...41
APIs and Java classes...41

TCP/IP API for Microsoft Windows... 41
.NET library..51

Web Services interface.. 70
ASP.NET implementation...71
J2EE implementation...71
Interface variants... 71
Submit a synchronous job to the Web Services interface.. 71
Submit an asynchronous job to the Web Services interface.. 81
Sample clients for synchronous and asynchronous jobs.. 91
Compatibility interfaces..91

Directory Watch interface client... 95
Install the KCM Core Directory Watch interface... 96
Configure the KCM Core Directory Watch interface... 96
Configure watched directories... 97

MQSeries interface... 99
Install the KCM Core MQSeries interface...99
Configure the MQSeries interface...100

4

Kofax Communications Manager Core Developer's Guide

MQSeries interface functionality..100
MQSeries configuration.. 101
MQSeries protocol.. 102

Submit jobs.. 103
MQSeries queues and requests..103

XML metadata from template runs.. 106
XML metadata content.. 106
Produce XML metadata...108
Identify Forms and questions.. 109

Form and question IDs...109
KCM Core Text Block XML format..109

Chapter 13: Information for system administrators..114
Assign the Log on as a Service right to a user...114
Manage the configuration file...114

Appendix A: Word processing settings... 118
Appendix B: Additional settings... 120

5

Preface

This guide provides information on the configuration and use of Kofax Communications Manager Core
(also known as KCM Core) and on the integration of KCM Core with various interfaces.

Related documentation
The documentation set for Kofax Communications Manager is available here:1

https://docshield.kofax.com/Portal/Products/KCM/5.5.0-3py4cyc64a/KCM.htm

In addition to this guide, the documentation set includes the following items:

Kofax Communications Manager Release Notes
Contains late-breaking details and other information that is not available in your other Kofax
Communications Manager documentation.

Kofax Communications Manager Technical Specifications
Provides information on supported operating system and other system requirement for Kofax
Communications Manager.

Kofax Communications Manager Installation Guide
Contains instructions on installing and configuring Kofax Communications Manager and its components.

Kofax Communications Manager Getting Started Guide
Describes how to use Contract Manager to manage instances of Kofax Communications Manager.

Kofax Communications Manager Batch & Output Management Getting Started Guide
Describes how to start working with Batch & Output Management.

Kofax Communications Manager Repository Administrator's Guide
Describes administrative and management tasks in Kofax Communications Manager Repository and
Kofax Communications Manager Designer for Windows.

Kofax Communications Manager Repository User's Guide
Includes user instructions for Kofax Communications Manager Repository and Kofax Communications
Manager Designer for Windows.

1 You must be connected to the Internet to access the full documentation set online. For access without an
Internet connection, see "Offline documentation" in the Installation Guide.

6

https://docshield.kofax.com/Portal/Products/KCM/5.5.0-3py4cyc64a/KCM.htm

Kofax Communications Manager Core Developer's Guide

Help for Kofax Communications Manager Designer
Contains general information and instructions on using Kofax Communications Manager Designer, which
is an authoring tool and content management system for Kofax Communications Manager.

Kofax Communications Manager Template Scripting Language Developer's Guide
Describes the KCM Template Script used in Master Templates.

Kofax Communications Manager Core Scripting Language Developer's Guide
Describes the KCM Core Script.

Kofax Communications Manager Batch & Output Management Developer's Guide
Describes the Batch & Output Management scripting language used in KCM Studio related scripts.

Kofax Communications Manager Repository Developer's Guide
Describes various features and APIs to integrate with Kofax Communications Manager Repository and
Kofax Communications Manager Designer for Windows.

Kofax Communications Manager ComposerUI for HTML5 JavaScript API Web Developer's Guide
Describes integration of ComposerUI for HTML5 into an application, using its JavaScript API.

Kofax Communications Manager ComposerUI for ASP.NET Developer's Guide
Describes the structure and configuration of KCM ComposerUI for ASP.NET.

Kofax Communications Manager ComposerUI for J2EE Developer's Guide
Describes JSP pages and lists custom tugs defined by KCM ComposerUI for J2EE.

Kofax Communications Manager ComposerUI for ASP.NET and J2EE Customization Guide
Describes the customization options for KCM ComposerUI for ASP.NET and J2EE.

Kofax Communications Manager DID Developer's Guide
Provides information on the Database Interface Definitions (referred to as DIDs), which is a deprecated
method to retrieve data from a database and send it to Kofax Communications Manager.

Kofax Communications Manager API Guide
Describes Contract Manager, which is the main entry point to Kofax Communications Manager.

Getting help with Kofax products
The Kofax Knowledge Base repository contains articles that are updated on a regular basis to keep you
informed about Kofax products. We encourage you to use the Knowledge Base to obtain answers to your
product questions.

To access the Kofax Knowledge Base, go to the Kofax website and select Support on the home page.

7

https://knowledge.kofax.com/
https://www.kofax.com/

Kofax Communications Manager Core Developer's Guide

Note The Kofax Knowledge Base is optimized for use with Google Chrome, Mozilla Firefox or Microsoft
Edge.

The Kofax Knowledge Base provides:
• Powerful search capabilities to help you quickly locate the information you need.

Type your search terms or phrase into the Search box, and then click the search icon.
• Product information, configuration details and documentation, including release news.

Scroll through the Kofax Knowledge Base home page to locate a product family. Then click a product
family name to view a list of related articles. Please note that some product families require a valid
Kofax Portal login to view related articles.

• Access to the Kofax Customer Portal (for eligible customers).
Click the Customer Support link at the top of the page, and then click Log in to the Customer Portal.

• Access to the Kofax Partner Portal (for eligible partners).
Click the Partner Support link at the top of the page, and then click Log in to the Partner Portal.

• Access to Kofax support commitments, lifecycle policies, electronic fulfillment details, and self-service
tools.
Scroll to the General Support section, click Support Details, and then select the appropriate tab.

8

Chapter 1

Introduction to the functionality

KCM Core is a server application that provides the template processing and scripting functionality for
KCM.

KCM Core provides an extensive range of safety and load balancing features to make it a robust
document production application. You can add processing capacity or remove it dynamically without
interruption to the production process.

KCM Core is designed to be deployed as one or more instances in a KCM installation. In this role it
receives jobs through KCM Contract Manager. A collection of APIs is provided to submit jobs directly for
legacy configurations.

KCM Core is used as an internal component that implements the KCM Contract Manager functionality.
Which tasks KCM can perform is determined in its Services. For example, a KCM Core setup can contain
a task to take the parameters from a request and use them to run a specific Template. Also, a task could
be to take the output of the ITP process, send it to an archiving system, convert it to PDF, and send it
together with an introducing email to the customer or just send the output to a printer and send an email to
the operator. For more information on Services, see KCM Core Services.

How a task is performed is determined in a Script, which is a series of commands. Scripts are written
in the Core scripting language. KCM Core comes with a script editor to facilitate script writing. For every
script, all settings defined on the Constants tab of KCM Core Administrator are accessible as global
constants. For additional information on scripts, see the Kofax Communications Manager Core Scripting
Language Developer's Guide.

KCM Core is controlled with KCM Core Administrator. KCM Core Administrator provides information
about the status of KCM Document Processor Manager and the KCM Document Processors and gives
access to all necessary settings. Also, it gives you the ability to start, stop, restart, and add KCM Core
and KCM Document Processors on the Servers node. KCM Core Administrator can control KCM Core
remotely. In case the servers are physically difficult to access, you can install KCM Core Administrator on
a workstation.

One of the tasks of KCM Core is to initiate and control the process of producing documents that
incorporate data from databases by means of templates. A Service that runs template scripts is RunMdl.
For more information on how to submit a request to the RunMdl Service, see Document composition .

9

Chapter 2

KCM Core Services

KCM Core functionality is implemented in the form of Services. KCM Contract Manager uses a standard
set of Services provided with the product. You can implement additional Services with custom scripts. This
chapter explains how to define Services.

Add a Service to create a script
1. Start KCM Core Administrator.
2. In the tree view, click the Services node.
3. On the Services tab, click Add Service.
4. Enter a Service name and click OK.

The corresponding Script Editor appears.
5. Make necessary changes and click File > Save.

Tip To write a script in multiple stages, you can simply save a script without compiling it and go
back to it any time later.

6. Close the Script Editor.
7. Click Save & Apply to save and apply the changes.
8. New or edited instruction in a script only becomes effective after compiling the script and restarting

the KCM Document processors. To compile the new script, click the new Service.
9. On the Services tab, map the script parameters to the request or job parameters known by their

sequence number.
The following is an example of what you may add to the list.
Script parameter Value (job parameter)
Template $1
ResultDocument $2

10. In the tree view, click the Services node once again.
11. On the Services tab, click Compile.

You will receive a notification about the compilation result.
12. Click Save & Apply.

The affected KCM Document Processors are restarted. KCM Core might be unavailable for some
time.
To remove a Service, navigate to Services, click the Service to delete, and then click Remove
Service on the toolbar. When a Service is removed, its script is not removed and remains in the
Scripts folder of the KCM Core setup for future use.

10

Chapter 3

Requirements for printer drivers

When installing printer drivers, follow these requirements:
• Use locally installed printer drivers to create spool files. You can use the LPT1: device as the printer

port.
• Avoid using spaces in the name of printers.
• Printers should never be put on hold. This blocks the creation of the spool file until the printer is

released.
• Wherever available, use printer drivers provided by your printer manufacturer.

Amyuni printer drivers
The KCM installation package automatically installs Amyuni printer drivers. You have to configure KCM
Core to run under a user account. You can change this account later using KCM Core Administrator or
through the Windows Services control panel applet.

The Amyuni printers are named PDFConverter ITPDP [ITP installation name] #1, and so on. These
printers may only be used by KCM Core. Other users that have accounts on the computer cannot use
these printers.

Reinstall Amyuni printer drivers
The Amyuni printer drivers may accidentally be damaged or removed. KCM Core provides two methods to
reinstall missing Amyuni printer drivers:

1. In KCM Core Administrator, remove the KCM Document Processor whose printer driver is damaged
and then add the KCM Document Processor again. This automatically recreates the Amyuni printer
driver for that KCM Document Processor.

2. Use the command line program CreateAmyuniPrinter.exe that resides in the directory bin/DocToPDF
of the KCM Core program folder. This program can be used to install and uninstall Amyuni printer
drivers for a KCM Document Processor. The program requires the following parameters: either
"install" (to install an Amyuni printer driver) or "uninstall" (to uninstall an Amyuni printer driver), the
name of the KCM Core installation, and the number of the KCM Document Processor whose Amyuni
printer driver is to be installed or uninstalled.
Once an Amyuni printer driver is reinstalled, restart the corresponding KCM Document Processors.

11

Kofax Communications Manager Core Developer's Guide

Switch to an older Amyuni version
In case of problems encountered with the latest Amyuni version, you can switch to the previously installed
5.5.2.7 version of the Amyuni software. To do so, proceed with the following steps.

1. Start KCM Core Administrator.

2. Click Stop All to interrupt the KCM Core services.

3. Remove the KCM Document Processors.

4. Locate the KCM Core program directory at: <deploy root>\KCM\Programs\5.5\ITP Server
\Bin.

5. In the "bin" folder, perform the following:
• Rename the folder DocToPDF to DocToPDF-6.0.1.1
• Rename the folder DocToPDF-5.5.2.7 to DocToPDF

6. In KCM Core Administrator, add the KCM Document Processors and then start the KCM Core
services.

From now on, KCM Core uses the 5.5.2.7 version of the Amyuni software again.

Note Before uninstalling or upgrading KCM Core, you must undo the above changes. To do so, perform
the following actions:
• Stop KCM Core and remove the Document Processors
• Rename DocToPDF to DocToPDF-5.5.2.7
• Rename DocToPDF-6.0.1.1 to DocToPDF

Starting KCM Core and adding Document Processors may be postponed until after the upgrade.

12

Chapter 4

Log and setup reports

Logging is set on the KCM Core level. The settings apply to all servers and KCM Document Processors in
your setup and to the KCM Document Processor Manager and Watcher. It is possible to log to a file or to
the Windows event log.

Watcher and CM Document Processor Manager log
The Watcher and KCM Document Processor Manager also produce logs. To view the logs:

1. In KCM Core Administrator, on the menu, click View.

2. Click Watcher log or KCM Document Processor Manager log, respectively.

Change the size limit of the log file
You can change the size limit of the log file for each KCM Document Processor.

1. Start KCM Core Administrator.
2. Under Servers, click a server.
3. In the right pane, select the Logging tab and make a selection where needed.

• To make the logging size unlimited, select Keep all log files.

• To limit the logging size, select Rotate log files.
This option has the following additional settings.
To limit the size of the log file per KCM Document Processor, specify the size in KB in Maximum
size of the log files. The default is 10000 KB (10 files of 1000 KB each).
To configure the number of log files to keep, specify the number in Keep the last log files. During
startup, KCM Core rotates existing log files and creates a new log file. Log files are also rotated if
the maximum size of a log file is reached. Old files are named [[logfiles] [number]].log.

Tip To keep all log files but still limit the total size, you can select a high number of files, such
as 9999, in combination with a small size log file, such as 1000 KB. The total log size per KCM
Document Processor is then limited to the number of files multiplied by the maximum log file
size.

4. Click Save & Apply.

13

Kofax Communications Manager Core Developer's Guide

Error messages
If a problem occurs, check the logs for error messages. There are three logs you can analyze -- the KCM
Core log, the KCM Document Processor log, and the Watcher log. You may want to view the Watcher log
when a KCM Document Processor log shows that the processor keeps shutting down.

Location of the log files
The log files are text files written to the log directory of the KCM installation. Each KCM Code instance
creates a structure of log files matching the installed components.

Example If KCM Core version 5.5.0 is installed on a server named TestServer, log files for KCM Core
instance 3 with two KCM Document Processors would reside with the following structure at <deploy
root>\KCM\Work\5.5\Instance_03\core\Log.

TestServer
 ITPDP [core_03_5.5] #1
 ITPDP [core_03_5.5] #2
 ITPDPWatcher [core_03_5.5]
 ITPServer [core_03_5.5]

These folders contain the logs for their respective components. By default, the logs are rotated. The most
recent logs reside in the unnumbered file with the .log extension.

You can view logs in a text editor.

Note Ensure that the account that runs the KCM Core Processes has sufficient authorization to write
to the folder that the log files are written to. If KCM Core does not have sufficient authorization in the
log folder, it is not able to start any of its Services. If no log files are created by KCM Core, check the
Windows event log for error messages.

CM Document Processor Manager example log
The following example log is based on the result of a request to the RunMdl Service as part of the KCM
Core instance 3 on a computer called TestServer.

09:36:18.994[2] CCM Core: Received request [TestJobID] for processing.

[TestJobID] is the job ID. Use it to track the job.

 09:36:19.975[3] ITPDP [core_03_5.5] #1@TestServer: Assigned job TestJobID to server
 ITPDP [TestServer] #1@MACHINE_1.

The job is assigned to the first KCM Document Processor on the TestServer setup on MACHINE_1.

09:36:20.156[2] ITPDP [core_03_5.5] #1@TestServer: ||| [TestJobID] Started.
09:36:23.400[3] ITPDP [core_03_5.5] #1@TestServer: <<< [TestJobID] Starting download
 file c:\temp\result.doc.

The result document is made, and you can move it to the required location.

09:36:24.792[2] ITPDP [core_03_5.5] #1@TestServer: <<< [TestJobID] Transferring 8192
 bytes of data.

14

Kofax Communications Manager Core Developer's Guide

09:36:24.812[2] ITPDP [core_03_5.5] #1@TestServer: >>> [TestJobID] Client confirmed
 transfer.

The user clicked OK in the file download confirmation window.

09:36:24.822[2] ITPDP [core_03_5.5] #1@TestServer: <<< [TestJobID] Completed.
09:36:24.852[2] ITPDP [core_03_5.5] #1@TestServer: Job TestJobID finished (0:00:04.867)
09:36:24.852[3] ITPDP [core_03_5.5] #1@TestServer: Requesting job (-1,-1).
09:36:24.852[3] CCM Core: Closing socket 1.
09:36:24.852[3] CCM Core: Releasing resources on socket 1.

CM Document Processor example log
You can search a specific KCM Document Processor log. In this case, the log of the first KCM Document
Processor in the KCM Core instance is similar to the following log.

 09:36:19.985[3] LoadBalancer: Received LB_JOB
09:36:19.985[2] LoadBalancer: Submitted request
TestJobID for processing by service RunMdl.

LoadBalancer is the DP Manager; it sends a request to process a job. You can use the Job ID to search
for its first appearance in the KCM Document Processor log.

09:36:20.085[2] Processor: Processing job TestJobID for
service RunMdl.

The request is accepted and the RunMdl Service starts
processing.
09:36:20.085[3] [TestJobID]: Subst [$1] to "listeng".
09:36:20.085[3] [TestJobID]: Subst [$2] to "c:\temp\result.doc".
09:36:20.085[3] [TestJobID]: Subst [$3] to default.
09:36:20.095[3] [TestJobID]: Subst [$4] to default.
09:36:20.095[3] [TestJobID]: Subst [$5] to default.

The script parameters are substituted for the past parameters. In this case, the Master Template and the
result document with its path are passed in the request.

09:36:20.095[3] [TestJobID]: Running script RunMdl.
09:36:20.095[4] [TestJobID]: Parameter Model = "listeng";
09:36:20.095[4] [TestJobID]: Parameter Result = "c:\temp\result.doc";
09:36:20.095[4] [TestJobID]: Parameter Keys = "";
09:36:20.105[4] [TestJobID]: Parameter Extras = "";
09:36:20.105[4] [TestJobID]: Parameter Flags = "";
09:36:20.105[4] [TestJobID]: Constant ModelDir = "C:\Program Files\ITPWORK - TestServer
\Models";
09:36:20.105[4] [TestJobID]: Constant DPItpTmpDir = "C:\TEMP\MACHINE_1\ITPDP
 [TestServer] #1\ITPTemp";
09:36:20.105[4] [TestJobID]: Constant DPItpConfigDir = "C:\TEMP\MACHINE_1\ITPDP
 [TestServer] #1\Config";
09:36:20.115[4] [TestJobID]: Constant DPItpDataDir = "C:\TEMP\MACHINE_1\ITPDP
 [TestServer] #1\Data";
09:36:20.115[4] [TestJobID]: Constant ServiceConfig = "C:\TEMP\MACHINE_1\ITPDP
 [TestServer] #1\ITPTemp\itp.cfg";
09:36:20.115[4] [TestJobID]: Constant ServiceResult = "C:\TEMP\MACHINE_1\ITPDP
 [TestServer] #1\Data\result.doc";
09:36:20.115[4] [TestJobID]: Constant ServiceModel = "C:\Program Files\ITPWORK -
 TestServer\Models\listeng.itp";
09:36:20.125[4] [TestJobID]: Built-in Delete.
09:36:20.125[4] [TestJobID]: File ("C:\TEMP\MACHINE_1\ITPDP [TestServer] #1\ITPTemp
\itp.cfg")

15

Kofax Communications Manager Core Developer's Guide

09:36:20.125[3] [TestJobID]: Deleted file C:\TEMP\MACHINE_1\ITPDP [TestServer]
 #1\ITPTemp\itp.cfg.
09:36:20.125[4] [TestJobID]: Built-in Copy.
09:36:20.135[4] [TestJobID]: Src ("C:\TEMP\MACHINE_1\ITPDP [TestServer] #1\Config
\itp.cfg")
09:36:20.135[4] [TestJobID]: Dest ("C:\TEMP\MACHINE_1\ITPDP [TestServer] #1\ITPTemp
\itp.cfg")
09:36:20.135[3] [TestJobID]: Copied file C:\TEMP\MACHINE_1\ITPDP [TestServer] #1\Config
\itp.cfg to C:\TEMP\MACHINE_1\ITPDP [TestServer] #1\ITPTemp\itp.cfg.

In the preceding block, the folders are set by the startup script of KCM Core.

09:36:20.135[4] [TestJobID]: OnError: Ignoring errors.
09:36:20.146[4] [TestJobID]: Built-in WriteFile.
09:36:20.146[4] [TestJobID]: File ("C:\TEMP\MACHINE_1\ITPDP [TestServer] #1\ITPTemp
\itp.cfg")
09:36:20.146[4] [TestJobID]: Message (";Model-specific settings")
09:36:20.146[4] [TestJobID]: Var Setting = "".
09:36:20.166[4] [TestJobID]: OnError: Using built-in error handler.
09:36:20.166[4] [TestJobID]: OnError: Installing ITPError as error handler.

ITPError is a standard error handler command provided by KCM Core.

09:36:20.166[4] [TestJobID]: Model("listeng")
09:36:20.166[4] [TestJobID]: Built-in ITP.
09:36:20.166[4] [TestJobID]: Model ("C:\Program Files\ITPWORK - TestServer\Models
\listeng.itp")
09:36:20.176[4] [TestJobID]: Configuration ("C:\TEMP\MACHINE_1\ITPDP [TestServer]
 #1\ITPTemp\itp.cfg")
09:36:20.176[4] [TestJobID]: Result ("C:\TEMP\MACHINE_1\ITPDP [TestServer] #1\Data
\result.doc")
09:36:20.176[4] [TestJobID]: Overwrite (True)
09:36:20.176[4] [TestJobID]: Keys ("")
09:36:20.176[4] [TestJobID]: Extras ("")
09:36:20.176[4] [TestJobID]: Flags ("")
09:36:23.380[4] [TestJobID]: Built-in SendFile.
09:36:23.380[4] [TestJobID]: Src ("C:\TEMP\MACHINE_1\ITPDP [TestServer] #1\Data
\result.doc")
09:36:23.380[4] [TestJobID]: Dest ("c:\temp\result.doc")
09:36:24.812[4] [TestJobID]: Built-in Delete.
09:36:24.812[4] [TestJobID]: File ("C:\TEMP\MACHINE_1\ITPDP [TestServer] #1\Data
\result.doc")
09:36:24.812[3] [TestJobID]: Deleted file C:\TEMP\MACHINE_1\ITPDP [TestServer] #1\Data
\result.doc.
09:36:24.822[4] [TestJobID]: Script RunMdl terminated OK.

The result document resides in [drive]:\=temp.

Read performance statistics from logs
If KCM Core is configured to log progress information (level 3 or higher), job statistics are written to
the itpserver.log file. This information can help you analyze the performance and load of the KCM
Coreconfiguration.

You can identify the statistics by the prefix STATS: on the line. Information is written as KEY[VALUE]
pairs.

An example is provided here.

16

Kofax Communications Manager Core Developer's Guide

16:19:31.890[2] ITPDP [Sample] #1@HOST: STATS:
SUB[16:19:08.734] STR[16:19:08.734] END[16:19:31.890] ID[StH] OL[0] SRV[Test] STS[4]
 IID[3]

The status line contains the following information:
• 16:19:31.890

Time the statistics line was written to the log.
• [2]

Log level (only shown if KCM Core is configured to log all information).
• ITPDP [Sample] #1@HOST

Identification of the specific Document Processor @ Server that executed the job.
• SUB[16:19:08.734]

Time the job was received and queued by KCM Core.
• STR[16:19:08.734]

Time the job was started by the designated KCM Document Processor.
• END[16:19:31.890]

Time the job finished.
• ID[StH]

Job ID.
• OL[0]

Identifies if the job is interactive or batch. This flag is 1 if the job is submitted through the KCM
ComposerUI for HTML5; otherwise, the flag is 0.

• SRV[Test]
Service.

• STS[4]
Completion status. Status 3 indicates successful completion, status 4 indicates that the script reported
an error. Other values indicate that the job failed to run.

• IID[3]
Internal identification of the job. This attribute is based on the order in which jobs are submitted to KCM
Core. However, this attribute cannot be used as a unique identification because scheduled jobs and
maintenance jobs generate a STATS: line every time the job runs on a KCM Document Processor.

You can derive the timing for a job from the following information:
• (STR - SUB) is the time the job spent queued waiting for assignment to an available KCM Document

Processor.
• (END - STR) is the time the KCM Document Processor spent executing the job.

Time in the STATS: line is based on a 24-hour clock read from the clock of the computer. The frequency of
this clock varies, but could be as low as 60Hz.

STATS: lines processing
The STATS: line is intended for automated processing. Applications that parse this line must adhere to the
following guidelines:
• All attributes are written in the format KEY[VALUE].

17

Kofax Communications Manager Core Developer's Guide

• The order of the attributes is not fixed and can change between versions. Applications should ignore
unknown attributes.

• As time is based on a 24-hour local clock, applications must account for jobs running past midnight or
changes due to daylight saving time.

18

Chapter 5

Notifications

You can configure KCM Core to notify an operator through the Event Log or by email if any KCM Core job
exceeds the configured time. To activate this feature, add the following settings to the [Configuration]
section of the dp.ini file in the KCM Core setup.

Note Ensure that all KCM Core Administrators are closed before adjusting the file dp.ini. After any
adjustments are made, the KCM Core and KCM Document Processors need to be restarted in order to
apply the changes.

; Notification settings
Notification=
NotificationEvent=
NotificationTo=
NotificationFrom=
NotificationSMTP=

The following is a description of the setting.

Notification

Amount of time before a notification is sent.

NotificationEvent

Windows server where the event is logged. ITPServerMSG.DLL contains the definition for the events and
must be installed on the host.

NotificationFrom

Email address used to send emails. This address is only relevant if the email cannot be delivered to the
addresses specified in the NotificationTo setting.

NotificationTo

A list of email addresses for recipients of the notification.

NotificationSMTP

SMTP server used to send the notification.

Note There are no defaults for these settings. If one of them is omitted, the appropriate notifications are
not sent. Notifications are sent while the job is still being processed. The status of the job is not affected.
If the job finishes while the notifications are still being sent, the KCM Document Processor waits until
these notifications are completed.

19

Kofax Communications Manager Core Developer's Guide

The following parameters are used to write events to the Windows Event log:
• Log: Application
• Type: Error
• Source: ITPEvent
• Event ID: 24

The following is a list of the Event parameters:
• Server
• KCM Document Processor
• Job ID
• Timeout in seconds
• Time that the timeout was triggered

An example is provided here.

; Notification settings
Notification=10
NotificationEvent=someserver
NotificationTo=operator@somewhere.com,administrator@somewhere.com
NotificationFrom=sender@somewhere.com
NotificationSMTP=smtp.somewhere.com

20

Chapter 6

Monitor and Watcher

Use the Monitor and Watcher functionalities to monitor KCM Core and KCM Document Processors.

Monitor functionality
KCM Core can be monitored either using the Monitor program or using a browser and enabling the HTTP
capabilities of KCM Core. You can remove, hold, and release individual jobs. Also, you can retrieve
information about the interfaces in use by KCM Core and retrieve the KCM Document Processor Manager
log.

You should opt for HTTP Monitor if the following is true in your situation: if you are sharing the program
with other people, and/or if access from outside the LAN is required. Otherwise, use Monitor.

For more information on the Monitor and HTTP Monitor, see Monitor application and HTTP Monitor
application, respectively.

Monitor application
You can run Monitor on the same machine as KCM Core or on a remote machine.

1. To configure the Monitor settings, click the KCM Core node and select the Monitor tab.
You must set the port and security settings. For more information on the security settings, see the
next chapter.

Note The port must not be in use by another instance or application. Implementing a port requires
the KCM Document Processor Manager to be restarted. When you click Save & Apply, the port is
saved, and the Manager is restarted.

2. To start the program, navigate to <deploy root>\KCM\Programs\<version>\ITP Server
\DPMonitor and start the DSMonitor application.
Use the port that you specified in Step 1.

21

Kofax Communications Manager Core Developer's Guide

HTTP Monitor application
To use HTTP Monitor, you need to have an Internet browser installed on the monitoring computer. This
browser communicates with KCM Core using HTTP.

1. To configure the HTTP Monitor settings, click the KCM Core node and select the HTTP Monitor tab.
You must set the port and security settings.

Note The port must not be in use. If no port is set, the HTTP capabilities of KCM Core are switched
off. Implementing a port requires the KCM Document Processor Manager to be restarted. When
you click Save & Apply, the port is saved, and the Manager is restarted.

1. To monitor KCM Core, start an Internet browser.

2. Use the following URL with the port that you specified in Step 1.

http://<host name>:<port>/queue

You can also check logs and service information on this link.

Watcher functionality
KCM Document Processors can be monitored using the Watcher functionality. Every server that runs KCM
Document Processors has a Watcher. If a KCM Document Processor shuts down, Watcher can restart it
a given number of times within the set interval. If the KCM Document Processor keeps shutting down, the
Watcher can stop restarting it to avoid an indefinite loop. To specify the number of seconds after which
Watcher restarts Document Processors, and a maximum number of times to attempt a restart, follow
these steps.

Note The Windows Service Manager and third-party tools can provide similar functionality. To avoid
conflicts between these tools, we recommend that you only use one method to restart KCM Core
Services.

1. Start KCM Core Administrator.
2. In the tree view, click the KCM Core node.
3. In the right pane, select the Advanced tab.

• In the Watcher section, to turn on the Watcher, select Restart the Document Processors when
they have shut down. Specify the necessary numbers in the corresponding fields.

Tip Watcher produces its own log. If a problem occurs with KCM Document Processors, this log
can provide additional information to the log file of the KCM Document Processors. To view the
log, on the menu, click View > KCM Core Manager log.

4. Click Save & Apply.

22

Chapter 7

Security issues

Proper security is essential to the KCM Core external interface, the internal interface between KCM
Document Processors and KCM Document Processor Manager, and the settings for the account used to
run KCM Document Processor Manager and KCM Document Processors. This chapter provides detailed
information on how to adjust the relevant security settings.

External interface
A KCM Core setup uses an external interface for requests. You can limit the access to this interface.

Grant or restrict network access
You can restrict access to the local host or to the machines on the access list, or grant access to all
machines. The access list is a comma-separated list of IP numbers of the machines that must have
access.

Note Restricting access to the local host only works if requests are submitted from the same machine
that KCM Core runs on.

1. Start KCM Core Administrator.

Note If jobs are submitted through KCM Contract Manager, the servers hosting KCM Contract
Managers must be granted access to this interface.

2. In the tree view, click the KCM Core node.
3. In the right pane, select the DP Manager tab.
4. Locate the TCP/IP Interface section and make a selection under Security.

• To restrict access to the local host, select Access is restricted to the local host.
• To allow access to all machines, select No access restrictions.
• To grant access to particular machines, select Network access list and specify the IP numbers in

the corresponding field.
Example 10.0.0.0/24
This setting grants access to IP numbers in the range from 10.0.0.0 to 10.0.0.255.

5. Click Save & Apply.

23

Kofax Communications Manager Core Developer's Guide

Adjust internal interface settings
The internal interface is used by KCM Document Processor Manager to communicate with KCM
Document Processors in the KCM Core setup. This is a TCP/IP interface, which can use similar security
settings to the external interface.

By default, the security is set to public. If all of the KCM Core setups run on one machine, you might
consider changing the security setting to local. When the servers running KCM Document Processors are
known, you can set an access list. To adjust the settings, follow these steps.

1. Start KCM Core Administrator.
2. In the tree view, click the Servers node.
3. On the Security tab, make a selection under Security.

• To restrict access to the local host, select Access is restricted to the local host.

• To set an access list for particular machines, select Network access list and specify the IP
numbers.
Example 10.0.0.0/24
This setting grants access to all IP numbers in the range from 10.0.0.0 to 10.0.0.255.

4. To save and apply the changes, click Save & Apply.

24

Chapter 8

Job recovery

Any hardware or software problem may cause KCM Core or the server running KCM Core to stop
functioning. A shutdown of the server or KCM Core may also cause KCM Core to stop functioning. KCM
Core is able to recover jobs that were submitted asynchronously. In this case, the client is notified of the
failure and takes appropriate action.

Active jobs are never recovered. If KCM Core is shut down in a controlled way, active jobs are always
processed completely before KCM Core terminates. If KCM Core is terminated by some other cause, it
is impossible to determine whether or not these jobs were the cause of the termination. Therefore, the
operator determines the cause of the termination and recovers the jobs manually.

Jobs submitted synchronously are not recovered. The client software notifies the user who submitted
the failure to resubmit the request later or to another server.

Jobs submitted asynchronously are always recovered.

Component Object Model resources for job recovery
You can update Component Object Model (COM) resources to control printing and PDF conversion.

1. Start KCM Core Administrator.
2. In the tree view, click the KCM Core node.
3. In the right pane, select the Job Recovery tab.

• To retry failed COM commands, in the External COM commands section, select Retry failed
COM commands (such as PrintDocument).

• To set a default timeout for all COM commands in the Core scripting language, specify the number
of seconds in the settings Terminate COM commands after seconds when running Interactive
jobs for jobs submitted through a KCM ComposerUI client and Terminate COM commands after
seconds when running Batch jobs for jobs submitted through a KCM Core client.
When a COM command exceeds these timeouts, Microsoft Word is terminated, and the system
reports a run-time error.

Note If you set one of these settings to 0 seconds, the system disables the default timeout for
the jobs associated with this setting.

The KCM Document Processor always monitors Microsoft Word for known interactive windows.
Such windows are closed automatically whenever possible to allow the job to continue. If this is
not possible, the Microsoft Word process is forcibly terminated, and the operation is either retried
or failed.

4. Click Save & Apply.

25

Chapter 9

Document composition

KCM Core is primarily designed as a high-grade server application that composes documents and
Document Packs. KCM Core requires a configuration file and an environment to compose documents and
Document Packs. For more information, see Manage the configuration file and Environments.

Environments
Environments offer the opportunity to run templates in KCM Core with a certain set of connection
configuration settings. These settings are used to connect to a data source. Environments can be
configured with KCM Core Administrator.

You can pass the exact environment to be used to run a template as a parameter in the ITPRun
command. For the composition of Document Pack Templates with this command, the environment
parameter is ignored. For more information, see ITPRun in the Kofax Communications Manager Core
Scripting Developer's Guide.

ITPRun command
The ITPRun command runs templates.

Use a rep:/ URl to create a document
You can use a rep:/ URl to compose a document.

The URLs supported to compose a document from a template or a Letter Book use the following generic
format.

rep://[{host}:port}]/{type}/{project}/[{path}/]{object}[?{key}={value}
[&{key}={value}]*]

rep://[{host}:{port}]/letter/{project}/{letterbook}/[{path}/]{object}[?{key}={value}
[&{key}={value}]*]

host: TCP/IP host name of the system hosting the KCM Repository Server

port: TCP/IP port the server listens to

type: Select one of the following template types to run or letterbook
• documenttemplate

• mastertemplate

26

Kofax Communications Manager Core Developer's Guide

• staticdocument

• quickdocument

• documentpacktemplate

project: Project

path: Optional. Folders separated by a slash symbol

object: Template to be retrieved

key/value: Additional key/value pairs for parameters. Supported keys are the following:
• user=Repository User
• status=[published|accepted|current|development]

Examples are provided below.

rep:/documenttemplate/DemoProject/Letter

The preceding example refers to the specific Document Template Letter in the project
DemoProject. The Document Template is retrieved from the KCM Repository Server configured in
ContentPublicationName on the default environment. The status retrieved is the status configured in
RepositoryObjectStatus on the default environment.

rep://localhost:2587/mastertemplate/DemoProject/Letters/Documentgenerator?
status=accepted

The preceding example refers to the accepted status of the Master Template Document generator
in the Letters folder (a subfolder of Templates) of the project DemoProject. The location of the KCM
Repository Server host:port is supplied as localhost:2587, which indicates that KCM Repository
installed on the local host configured with port 2587. The status indicates that the accepted status of the
Master Template is retrieved, and that the accepted status of any dynamic objects is retrieved.

rep://localhost:2587/letter/DemoProject/Correspondence/Welcome Letter

The second example refers to the Document Template defined in the Correspondence Letter Book
under the name Welcome Letter. Letter Books allow an additional level of indirection in application
integration.

Keys and extra parameters
Keys and extra parameters provide an interface for applications to pass information to a template. For
example, you can use the key or extra parameters to identify the customer for whom you want to create a
policy or an invoice. Then, the template can use the identifying information to retrieve the records for the
customer.

Keys can be used in combination with Master Templates that contain Data Retrieval using a DID. If
the Master Template contains DID entries that select records from a database, you can provide keys
to identify which records to select. For more information, see the section "Data retrieval" in the Kofax
Communications Manager Template Scripting Language Developer's Guide.

EXTRAs can be used in combination with Master Template that contain the EXTRA keyword. EXTRA
defines what additional information the Master Template requires. For more information, see the section
"EXTRA" in the Kofax Communications Template Scripting Language Developer's Guide.

27

Kofax Communications Manager Core Developer's Guide

Keys and extras are passed to ITPRun as strings of values divided by semicolons. The order in which
they are passed must be the same as the order in which they are expected in the Master Template.

When a Master Template requires keys or extras that are not provided in the call, the template becomes
interactive and prompts the user to provide the missing keys and extras. If interaction is not allowed, the
Master Template reports an error.

Enable DisablePostIncludes
DisablePostIncludes needs to be enabled (set to True) to prevent the ITPRun command from post-
including document into the result document (to process the __INC expression in result documents).
Post-includes in KCM Core are performed lazy by default (ITPLAZYPOSTINC=Y). If not set or set to
False, the ITPRun command uses the ITPPOSTINC setting in the itp.cfg to determine if post-includes
have to be processed.

Specify the environment
Templates are always run in the context of an environment. You need to specify the name of the
environment in which the template is run. If no environment parameter is given, the default environment is
used to run the template.

During the composition of Document Pack Templates with the ITPRun command, the environment
parameter is ignored. For more information, see ITPRun command in the Kofax Communications
Manager Core Developer's Guide.

IBM i connection parameters
This section lists and describes the parameters that you can use when retrieving data from an IBM i
(AS/400, iSeries) host.

PreCMD

Optional.

The Pre command is executed after the library list is set.

 OnSuccessCMD

Optional.

The OnSuccess command is executed if the template has completed successfully.

 OnFailureCMD

Optional.

The OnFailure command is executed if the template has failed.

 PostCMD

Optional.

The Post command is executed at the end of the run (after OnSuccess or OnFailure).

28

Kofax Communications Manager Core Developer's Guide

Data Backbone XML setting
This section describes the Data Backbone XML setting.

 DBB_XMLInput

Optional, string.

The name of a data XML file used to fill the Data Backbone. The data XML must match the XSD of the
Data Backbone.

DBB_XMLOutput

Optional, string.

The name of a file where the XML with data of the Data Backbone of a template should be stored after the
template run has completed.

The file name passed to DBB_XMLInput and DBB_XMLOutput should be a valid path/file specification
on the computer running KCM Core. The name can be preceded by session:, in which case the file is
located in the session directory. The DBB parameters allow you to create templates that do not need a
DID as data is loaded directly into the Data Backbone from the XML.

OutputMode setting
This section describes the OutputMode setting.

 OutputMode

Optional, string.

The OutputMode specifies the type of output document produced by the ITPRun command.

The following formats are currently supported:
• native produces a document in the same format as the template.
• utf8 produces text in UTF-8 encoding.
• utf16 produces text in UTF-16 encoding.
• aiadocxml produces an XML file representing the structure of the result document. This structure is

based on the Content Wizards used in the document.
• pack produces a Document Pack. If the template is a Document Template, it is treated as a Document

Pack Template. The produced Document Pack will have a single slot containing the result of that
template.

The default is native.

A template can query the OutputMode parameter by calling the function
runmodel_setting("OutputMode").

The following Template scripting language functions are prohibited if the OutputMode is set to something
other than native:
• add_to_output

29

Kofax Communications Manager Core Developer's Guide

• footers

• headers

• inc

• pagestyle

• paper_types

• put_buffer_in_document

• put_in_document

• put_in_text_file

• put_in_text_file2

• stylesheet

In the OutputMode XML, the template is not allowed to produce any output. This restriction also prohibits
the use of #...# and the TEXTBLOCK statement (unless it uses the ASSIGN_TO keyword).

The OutputMode setting is available in KCM Core 4.2.3 or higher.

Master Templates running in a sandbox content
By default, KCM Core 4.4 packages run Master Templates in a sandboxed environment. The sandbox
prohibits any statements and functions that could interface with the server, the file system, such as
WRITE, or the environment, such as session_parameter.

You can configure the sandbox in three modes:
• Pre-flight validation

Any Master Template that contains prohibited statements or functions is blocked before it is started.
To enable this mode, add the setting ITPSANDBOX=Y to the ITP.CFG file. This mode is the default for
new installations of KCM Core 4.4 and higher.

Note The validation performed before the startup is based on a static analysis during compilation. Code
that cannot be executed blocks the Master Template. Code blocked based on parameters is permitted,
but will be blocked during execution.

• Dynamic validation
Any Master Template is checked during execution. When the Master Template tries to execute a
prohibited statement or function, it is terminated. As this check is performed dynamically during
execution, some functions are blocked only when they try to execute a prohibited operation but could
be permitted with a different combination of parameters. For example, insert_image will be blocked if
the image is read from a file, but permitted if the image is read from the Data Backbone.
To enable this mode, add the setting ITPSANDBOX=L to the ITP.CFG file.

• Disabled
All checks are disabled. Master Templates are allowed to use all features of the Template scripting
language.
To enable this mode, add the setting ITPSANDBOX=N to the ITP.CFG file. This mode is default for KCM
Core 4.2.3 and older versions.
The sandbox configuration is applied globally to all jobs for the KCM Core instance. All KCM Document
Processors must be restarted to apply a changed setting.

30

Kofax Communications Manager Core Developer's Guide

Closed Loop Identifier
The Closed Loop Identifier provides an identification passed to each template and included into the
resulting metadata XML and in the metadata of the resulting Document Pack. The Closed Loop Identifier
parameter on ITPRun provides the initial value. Templates can change or extend the value to provide
alternative or more detailed identification for each result document in a Document Pack.

The Template scripting language can access the Closed Loop Identifier through the following built-in Field
Sets:
• _Template.ClosedLoopIdentifier: Read-only

Contains the value of the Closed Loop Identifier as provided to the ITPRun command.
• _Document.ClosedLoopIdentifier: Writable

Contains the current value of the Closed Loop Identifier. The Template can change this value. The
value at the end of the template is used to identify the result documents in the Document Pack.

For Document Templates executed directly, _Document.ClosedLoopIdentifier is initially equal to
_Template.ClosedLoopIdentifier.

In the context of a Document Pack Template, the precursor template can override the initial value of the
_Document.ClosedLoopIdentifier field. The resulting value of this field is used as the initial value
for _Document.ClosedLoopIdentifier in each of the subsequent Document Templates defined in
the Document Pack Template.

RunDocumentPackTemplate Service
To facilitate running of a Document Pack Template, the RunDocumentPackTemplate Service is
provided.

The following table describes the parameters applicable to this Service. These parameters must be
passed to RunDocumentPackTemplate as a list separated by semicolons.

Parameter Description

DocumentPackTemplate Required. The rep:/ URl to be executed.

Result Optional. The result document, path and name, and
extension. The path is optional. If no path is given, the
requesting application receives the file and moves it to
the specific destination. If no value is given, the result is
written in a result.doc.

Environment Optional. Only supported for document templates.
Templates are always run in an environment. You
need to specify the name of the environment. If no
environment parameter is given, the default environment
is used to run the template. If an environment is passed
that does not exist, an error is given.
During the composition of Document Pack Templates
with the ITPRun command, this parameter is ignored.

31

Kofax Communications Manager Core Developer's Guide

Parameter Description

DBB_XMLInput Optional. The name of a data XML file used to fill the
Data Backbone of the template.

RunMdl Service
To facilitate running of a document template, the RunMdl Service is provided.

The following table describes the parameters applicable to this Service. These parameters must be
passed to RunMDL as a list separated by semicolons.

Parameter Description

Model Required. The rep:/ URl to be executed.

Result Optional. The result Document Pack, path and name,
and extension. The path is optional. If no path is given,
the requesting application receives the file and moves it
to the specific destination. If no value is given, the result
is written in a result.doc.

Keys

Extras

Optional, depending on your template. Keys and extra
parameters are used to pass information to a template.
You can use this mechanism when you integrate KCM
into a business application. For example, you can use
the key or extra parameters to identify the customer
for whom a policy or an invoice needs to be created.
The template can then use the identifying information to
retrieve the full customer name and address.

Environment Optional. Templates are always run in an environment.
You need to specify the name of the environment. If no
environment parameter is given, the default environment
is used to run the template. If an environment is passed
that does not exist, an error is given.

MetaData Optional. The name of an XML file to store metadata
after the template run is completed.

DBB_XMLInput Optional. The name of a data XML file used to fill the
template Data Backbone.

DBB_XMLOutput Optional. The name of a file to store the XML file with
data of the template Data Backbone after the template
run is completed.

Test a template
To test a template, follows the steps below.

1. Start KCM Core Administrator.

32

Kofax Communications Manager Core Developer's Guide

2. On the toolbar, click Tools and click Test Tool.
The Test Tool opens with localhost as the host and 3003 as the port number. The port number might
be different in your case.

3. In the Service text box, enter RunMdl or RunDocumentPackTemplate.
The RunMdl command does not support Document Pack Templates.

4. In the Job parameters text box, enter the following.
 <<rep:/ URI>>

5. Click Submit.
The template is processed. The Test Tool informs you that data is written to result.doc or
documentpack.zip, depending on the template being tested. To choose a folder where the result is
stored, click Browse in this window, select a folder, and then click OK.

33

Chapter 10

KCM Core scripts

This chapter provides information about scripts and their usage.

Scripts help control and configure KCM Core as well as create KCM configuration files.

You can use scripts as components in other scripts. For more information on the syntax of script
components, see the section "Scripts as commands" in the Kofax Communications Manager Core
Scripting Language Developer's Guide.

Scripts are text files containing KCM Core scripting language commands. KCM Core comes with a script
editor to facilitate creating and editing scripts.

All scripts are located in the scripts folder of the KCM Core instance. The Scripts folder contains scripts
that you create. The User Library folder contains exit point scripts that you can customized.

Note Scripts placed in the Scripts folder are not automatically exposed as KCM Core Services. To
expose a script as a KCM Core Service, it must be added in KCM Core Administrator. To learn how, see
Add a Service to create a script.

KCM Core internal scripts and commands take precedence over the scripts created by the user. If you
create a script with the same name as an existing KCM Core Script command, your script will not be
available. To avoid this issue, adopt a naming convention for scripts. For example, you can name your
scripts starting with your company name.

Create and deploy a Core scripting library
It is possible to pack the functionality of a number of core scripts in a Core scripting library and deploy
this easily on a KCM instance. Such libraries are typically used to deploy Contract Manager interface
implementations to the appropriate instance. The section below explains how to create such a library.

34

Kofax Communications Manager Core Developer's Guide

To create and deploy a Core scripting library, you need to have the following:
• The Script.exe creating tool to create a KCM Core script library.

1. To locate the tool, navigate to:
<deploy root>\KCM\Programs\<KCM version>\ITP Server\bin

On the list with installed executables, find script.exe.
2. Copy script.exe to your desired destination. Example C:\CreateLibrary

• Scripts to add. Create a folder for the scripts to add. Example C:\CreateLibrary\Scripts
You should store scripts as .dss files. The name of the *.dss file must match that of the script. The
content follows the rules of the Core scripting language as described in the Kofax Communications
Manager Core Scripting Language Manual.

• Exit point scripts. Exit point scripts must be stored as .dss files. The name of the *.dss file must
match that of the exit point. After you have deployed the library, all the exit point scripts must be
available when you recompile your scripts.

Note When you make changes to exit points, make sure to recompile your script for the changes to
take effect.

• SPEC file. The SPEC file contains the following specifications needed to create a library file.
A list with constants available for use in scripts
A list with internals (scripts) to expose as available services
A list with exit points (optional)
Maximum log level for the library
Company (required)
Description
MinVersion
Library (required)
ScriptPath (required)

For more information, see the example SPEC file that resides in: <deploy root>\KCM
\Documentation\<KCM version>\Resources\Examples\Core Scripting

KCM core script library (itpserver.cds)

1. Locate the KCM Core script library for the instance. All instances contain the same KCM Core script
library so you do not need to repeat this for each instance. You can copy the itpserver.cds file to a new
location, if needed.

2. To locate itpserver.cds, navigate to:

<deploy root>\KCM\Work\<KCM version>\Instance_01\core\Config

3. Enter the location of the file in the previously created SPEC file as library=<location>\itpserver.cds>. For
more information, see the example SPEC file that resides in: <deploy root>\KCM\Documentation
\<KCM version>\Resources\Examples\Core Scripting

35

Kofax Communications Manager Core Developer's Guide

Create a library

To create a library, execute the following command.

Script.exe –lib library.cds <spec>

where: <spec> indicates the SPEC file name that specifies the scripts to add.

A library.cds file is created. It contains the scripts listed in the SPEC file.

Note If the scripts contain errors, the library.cds file fails to be created. Script.exe returns error
messages indicating the issues it encountered.

To create an additional library, execute the following command.

Script.exe –lib <name>.cds <spec>

Deploy a library

1. Substitute the library.cds file (see the "Create a library" procedure above) for the library.cds
file located at the instance to which you want to deploy.
To locate the library.cds file, navigate to: <deploy root>\KCM\Work\<KCM version>
\<Instance_#>\core\Config

where:
<KCM version> - the installed KCM version
<Instance_#> - the instance to which you want to deploy the library.cds file.

2. Restart all Document Processors for the library to become active.

3. To restart the document processors, you can use KCM Core Administrator, StopInstance and
StartInstance tools, or the Windows Services control panel applet. On Docker, you can also use
the RestartInstanceCoreDPServices tool.

Deploy an additional library

1. Place the library in the same directory as the library.cds file located at the instance to which you
want to deploy. Also, see the "Create a library" procedure above.
To locate the library.cds file, navigate to: <deploy root>\KCM\Work\<KCM version>
\<Instance_#>\core\Config

where:
<KCM version> - the installed KCM version
<Instance_#> - the instance to which you want to deploy the cds file

36

Kofax Communications Manager Core Developer's Guide

2. Register the new library.

Note Before proceeding, make sure that no KCM Core Administrator is open for the instance that
you want to register the new library for.

Open the dp.ini file for that instance and add the following line to the configuration section.
LibraryList = <name>.cds

To register multiple libraries, list them using a semicolon as a separator, as shown below. To locate
the dp.ini file, navigate to: <deploy root>\KCM\Work\<KCM version>\<Instance_#>
\core\Config

where:
<KCM version> - the installed KCM version
<Instance_#> - the instance to which you want to deploy the CDS file

Note You can register at most 30 additional libraries.

3. Restart all Document Processors for the library to become active.
To restart the document processors, you can use KCM Core Administrator, StopInstance and
StartInstance tools, or the Windows Services control panel applet. On Docker, you can also use
the RestartInstanceCoreDPServices tool.

37

Chapter 11

Job scheduling

KCM Core provides a number of mechanisms to control job ordering and to automate jobs. This chapter
provides a description of those mechanisms.

Scheduled jobs
KCM Document Processor Manager automatically schedules internal jobs that run every day and hour.
The internal jobs are executed on the first available KCM Document Processor and provide an exit point
that the administrator can modify to perform custom tasks. The tasks are guaranteed to be scheduled
sequentially. The exit points are implemented as KCM Core scripts. The default implementation of these
exit points resides in the User Library folder.

Exit points
The following two scripts are provided as custom exit points:
• HourlyTask.dss is called every hour.
• DailyTask.dss is called every day at midnight local time.

If all KCM Document Processors are busy processing jobs, it may take some time before a KCM
Document Processor is available to run the scheduled jobs. If the delay exceeds an hour, you can run
multiple hourly jobs in quick succession.

For administrative purposes, every exit point script receives the numerical parameter ScheduledTime.
This parameter contains the local time (in the HHMMSS format) at which the job was scheduled for
execution. You can use it as an alternative when the current local time is inappropriate.

The order in which the HourlyTask.dss and DailyTask.dss scripts are called is unspecified, but they
are guaranteed not to be run at the same time on different KCM Document Processors. The default
HourlyTask.dss script provided with KCM Core calls the ExpireSessions command to remove any
sessions that have been either idle for more than four hours or that have existed for more than a week.

Downtime and clock changes
No jobs are scheduled during the time that passed since the previous shutdown. For example, if KCM
Document Processor Manager is stopped every night at 23:00 and restarted at 01:00, the daily job will
never be executed and the DailyTask.dss exit point will never be called. In such a situation, you can use
the HourlyTask.dss script to perform any daily tasks at a more appropriate time.

38

Kofax Communications Manager Core Developer's Guide

If the clock on the server is set forward while KCM Core is running, internal jobs are scheduled in quick
succession for each hour and midnight event in the skipped interval. It can take a couple of minutes
before a clock change has been detected and the scheduled job for the skipped interval is run. If the clock
on the server is set back, the scheduling is not changed and no internal jobs are scheduled until the clock
passes the original time again.

Note Keep the clock on a KCM Core server synchronized with a reliable time source. Avoid
unnecessary changes to the clock.

Time zones and daylight saving time
The scheduling of the internal KCM Core jobs is based on Universal Coordinated Time (UTC) and
provides consistent scheduling when clock changes occur due to daylight saving time shifts. The
parameter ScheduledTime passed to the exit points contains the local time at which the script was called.
If a daylight saving time shift sets the clock back a full hour the HourlyTask.dss, the script is called twice
with the same local time, once before the shift, and once after the shift has been applied. Tasks which
use the parameter ScheduledTime or the current time for administrative purposes must account for these
occurrences.

There are a few time zones, such as Newfoundland and Central Australia, which have a 30-minute offset
to the UTC time. On systems configured for these time zones, the daily tasks are scheduled at 00:30 local
time every day while hourly tasks are scheduled at thirty minutes past the hour.

Interactive scheduling
Jobs are distributed over the available KCM Document Processors in the order they arrive. If a KCM Core
instance is used to service both interactive and batch jobs, long running batch jobs can cause a delay in
the processing of interactive jobs, degrading the user experience for interactive users.

KCM Core provides two options on the Advanced tab of the KCM Core Administrator:

1. Prioritize interactive requests over Batch requests.
This option forces KCM Core to prioritize interactive requests over batch requests whenever a
KCM Document Processor becomes available. Interactive requests can still be delayed if all KCM
Document Processors are busy servicing a batch request.

2. Reserve Document Processors for Interactive requests.
This option forces KCM Core to always reserve the indicated number of KCM Document processors
for interactive jobs. Batch jobs are only run if there are more KCM Document Processors available
than this limit.

Jobs scheduling on all KCM Document Processors
By default, a job is run only once on the first available KCM Document Processor. You can use KCM Core
clients to schedule jobs which are guaranteed to run once on every available KCM Document Processor.

39

Kofax Communications Manager Core Developer's Guide

These jobs are intended for maintenance purposes and have the following properties:
• The job is executed with the highest priority and preempts all other pending jobs.
• If multiple jobs are submitted to run on all KCM Document Processors, these jobs are run in order of

submission.
• The job is guaranteed to run on all KCM Document Processors that were connected at the time the job

was submitted, both on the local system and on remote systems. The job is not run on KCM Document
Processors that connect after the job has been submitted.

• The job is guaranteed to only run on one KCM Document Processor at a time. The order in which the
job is assigned to subsequent KCM Document Processors is unspecified.

• The jobs are always run asynchronously.

Currently, you can use the programs saclient.exe and swclient.exe to submit these jobs directly using the
-a flag. Other APIs can call the sample SubmitMaintenanceJob.dss script as a wrapper to submit these
jobs.

40

Chapter 12

Integration

This chapter provides detailed information on the integration layer of KCM Core.

APIs and Java classes

TCP/IP API for Microsoft Windows
The KCM Core distribution contains the sock_api.dll file with a TCP/IP API for the Windows platform. You
can use this library to send requests to a TCP/IP interface. A separate DLL sock_api64.dll is provided for
64-bit applications.

The TCP/IP API provides the following functions for submitting requests: SSubmitJob, SSubmitJobMsg,
SSubmitJobEx4, and SSubmitJobEx5.

SSubmitJob is simplest to use, but supports only basic functionality. The SSubmitJobEx4 and
SSubmitJobEx5 APIs support the SendFile, ReceiveFile, and ConvertCodepage commands
on the Windows platform. For more information on SSubmitJobEx4 and SSubmitJobEx5, see
SSubmitJobEx4 and SSubmitJobEx5 functions.

For use in single-threaded Windows GUI applications, the API function SSubmitJobMsg is provided. This
function provides equivalent functionality to SSubmitJob, but performs the job submission in a separate
thread, sending back job completion messages to a controlling window.

SSubmitJob function
The SSubmitJob function submits a request to KCM Core using TCP/IP sockets as a communication
mechanism.

BOOL WINAPI SSubmitJob (
TCHAR *Host, // pointer to host
TCHAR *Port, // pointer to port
TCHAR *JobID, // pointer to Job Identifier
BOOL Sync, // wait for request to finish
TCHAR **Parameters, // parameter list, starting with
 // the name of the requested Service
TCHAR *Result, // buffer for result text
int Length, // size of buffer
void (*Progress) (TCHAR *) // callback for progress messages
);

41

Kofax Communications Manager Core Developer's Guide

The SSubmitJob function has the following parameters:
• Host

Pointer to a null-terminated string that contains the name of the server running KCM Core. You can
specify the name either in (IPv4) Internet Protocol dotted address notation (a.b.c.d) or as a resolvable
host name.

• Port
Pointer to a null-terminated string that contains the name of the port to connect to. You can specify the
port either in a numerical format or as a Service name resolved through available Service databases.

• JobID
Pointer to a null-terminated string that contains the Job Identifier for the job.

• Sync
Specifies whether the function should wait until the job has been serviced. This parameter can have
one of the following values:

Value Meaning

FALSE The function returns as soon as the request has been
queued for processing.

TRUE The function waits until the request has been processed
by KCM Core.

When the Sync parameter is FALSE, the SSubmitJob function returns when KCM Core has queued
the request. When the Sync parameter is TRUE, the SSubmitJob function returns when KCM Core
has finished servicing the request.

• Parameters
Pointer to a null-terminated list of string pointers. Every string pointer in this list points to a parameter
passed with the job to KCM Core. The first parameter should be the name of the requested Service. For
all parameters, the meaning of the empty string ("") is that the parameter is not passed at all, and KCM
Core substitutes the default value or generates an error if no default value has been specified.
If Parameters is NULL, no parameters are passed with the job.

• Result
Pointer to a buffer that receives an error message if the submission of the job or the processing of the
job failed. The error message placed in the Result buffer on failure will be truncated if the buffer is too
small. A size of at least 1024 characters is advised.

• Length
Size of the buffer indicated by Result in characters, not bytes.

• Progress
Pointer to a callback function called by SSubmitJob whenever the server sends back a progress
message. This progress message is passed as parameter to the Progress function.
SSubmitJob ignores NULL progress messages.

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero. The
buffer indicated by Result contains an error message explaining the cause of the failure.

The string passed to the Progress function is a static buffer and is released by the SSubmitJob function
after the Progress function returns.

SSubmitJob sends the name of the user logged on at the workstation as the User of the job.

42

Kofax Communications Manager Core Developer's Guide

QuickInfo

Header: Declared in s_api.h.

Import Library: Use sock_api.lib.

Unicode: Implemented as both Unicode and ASCII.

SSubmitJobMsg function
The function SSubmitJobMsg submits a job to KCM Core using TCP/IP sockets as the communication
mechanism. The job submission process is handled in a separate thread. After the job has been
processed, a message is sent to the controlling window.

BOOL WINAPI SSubmitJobMsg (
TCHAR *Host, // pointer to host
TCHAR *Port, // pointer to port
TCHAR *JobID, // pointer to Job Identifier
TCHAR **Parameters, // parameter list, starting with
 // the name of the requested Service
TCHAR *Result, // buffer for result text
int Length, // size of buffer
HANDLE hWindow // handle of the controlling window
);

The SSubmitJobMsg function has the following parameters:
• Host

Pointer to a null-terminated string that contains the name of the server running KCM Core. You can
specify the name either in (IPv4) Internet Protocol dotted address notation (a.b.c.d) or as a resolvable
host name.

• Port
Pointer to a null-terminated string that contains the name of the port to connect to. You can specify
the port either in a numerical format or as a Service name resolved through any available service
databases.

• JobID
Pointer to a null-terminated string that contains the Job Identifier for the job.

• Parameters
Pointer to a null-terminated list of string pointers. Every string pointer in this list points to a parameter
passed with the request to KCM Core. The first parameter should be the name of the requested
Service. For all parameters, the meaning of the empty string ("") is that the parameter is not passed
at all, and KCM Core will substitute the default value or generate an error if no default value has been
specified.
If Parameters is NULL, no parameters are passed with the job.

• Result
Pointer to a buffer that receives an error message if the submission of the job or the processing of the
job failed. The error message placed in the Result buffer on failure is truncated if the buffer is too small.
A size of at least 1024 characters is advised.

• Length
Size of the buffer indicated by Result in characters, not bytes.

43

Kofax Communications Manager Core Developer's Guide

• hWindow
Handle of the controlling window. SSubmitJobMsg sends this window a message after the job has
been processed.

The SSubmitJobMsg function creates a thread to wait for the synchronous processing of the request.
The SSubmitJobMsg returns TRUE if this thread has been created successfully, and FALSE if the
creation of the thread failed. In case SSubmitJobMsg returns FALSE, the buffer indicated by Result
contains an error message explaining why the thread could not be started.

The SSubmitJobMsg function sends an ITPDS_RESULT message to the hWindow window after the
request has been processed. The wParam parameter of this message is TRUE if the request succeeded;
otherwise, it returns FALSE. If the request failed, the lParam parameter points to a NULL-terminated string
indicating the cause of the failure.

Use the RegisterWindowMessage function from the Microsoft Windows API to retrieve the identifier for
the ITPDS_RESULT message.

The parameters passed to the function SSubmitJobMsg should not be freed until the reply message has
been received.

The SSubmitJobMsg function sends the name of the user logged on at the workstation as the User of the
job.

QuickInfo

Header: Declared in s_api.h.

Import Library: Use sock_api.lib.

Unicode: Implemented as both Unicode and ASCII.

SSubmitJobEx4 and SSubmitJobEx5 functions
The SSubmitJobEx4 and SSubmitJobEx5 functions submit a request to KCM Core using TCP/IP
sockets as a communication mechanism. Compared to the SSubmitJob function, these functions add
support for the ExchangeData and ValidateFileName callback APIs and for specifying KCM Core
session IDs. The two functions provide the same functionality, except that the callback functions for
SSubmitJobEx4 use the cdecl calling convention while the callback functions for SSubmitJobEx5 use
the stdcall calling convention.

These functions replace the older SSubmitJobEx, SSubmitJobEx2, and SSubmitJobEx3 functions
which are still available as a convenience, but deprecated. As these older functions should not be used in
new installations, their functionality is not described in this guide.

BOOL WINAPI SSubmitJobEx4 (
TCHAR *Host, // pointer to host
TCHAR *Port, // pointer to port
TCHAR *JobID, // pointer to Job Identifier
BOOL Sync, // wait for request to finish
TCHAR **Parameters, // parameter list, starting with
 // the name of the requested Service
TCHAR *Result, // buffer for result text
int Length, // size of buffer
SUBMITJOB4 *Extended // extended parameters
);

44

Kofax Communications Manager Core Developer's Guide

BOOL WINAPI SSubmitJobEx5 (
TCHAR *Host, // pointer to host
TCHAR *Port, // pointer to port
TCHAR *JobID, // pointer to Job Identifier
BOOL Sync, // wait for request to finish
TCHAR **Parameters, // parameter list, starting with
 // the name of the requested Service
TCHAR *Result, // buffer for result text
int Length, // size of buffer
SUBMITJOB5 *Extended // extended parameters
);

The functions have the following parameters:

• Host
Pointer to a null-terminated string that contains the name of the server running KCM Core. The name
can be specified either in (IPv4) Internet Protocol dotted address notation (a.b.c.d) or as a resolvable
host name.

• Port
Pointer to a null-terminated string that contains the name of the port to connect to. The port can be
specified either in a numerical format or as a Service name resolved through any available Service
databases.

• JobID
Pointer to a null-terminated string that contains the Job Identifier for the job.

• Sync
Specifies whether or not the function should wait until the job has been serviced. This parameter can
have one of the following values:

Value Meaning

FALSE The function returns as soon as the request has been
queued for processing.

TRUE The function waits until the request has been processed
by KCM Core.

When the Sync parameter is FALSE, the SSubmitJobEx4 function returns when KCM Core has
queued the request. When the Sync parameter is TRUE, the SSubmitJobEx4 function returns when
KCM Core has finished servicing the request.

• Parameters
Pointer to a null-terminated list of string pointers. Every string pointer in this list points to a parameter
passed with the job to KCM Core. The first parameter should be the name of the requested Service. For
all parameters, the meaning of the empty string ("") is that the parameter is not passed at all, and KCM
Core substitutes the default value or generates an error if no default value has been specified.
If Parameters is NULL, no parameters are passed with the job.

• Result
Pointer to a buffer that receives an error message if the submission of the job or the processing of the
job failed. The error message placed in the Result buffer on failure will be truncated if the buffer is too
small. A size of at least 1024 characters is advised.

• Length
Size of the buffer indicated by Result in characters, not bytes.

45

Kofax Communications Manager Core Developer's Guide

• Extended
Pointer to a SUBMITJOB4 (for SSubmitJobEx4) or SUBMITJOB5 (for SSubmitJobEx5) data structure
that holds additional parameters to the function.

The string passed to the Progress function is a static buffer and will be released by the
SSubmitJobEx4/ SSubmitJobEx5 function after the Progress function returns.

The SSubmitJobEx4 and SSubmitJobEx5 functions send the name of the user logged on at the
workstation as the User of the job.

QuickInfo

Header: Declared in s_api.h.

Import Library: Use sock_api.lib.

Unicode: Implemented as both Unicode and ASCII.

SUBMITJOB4 and SUBMITJOB5
The SUBMITJOB4 and SUBMITJOB5 data structures contain additional parameters for the extended
KCM Core APIs. The SUBMITJOB4 data structure is used with SSubmitJobEx4; the SUBMITJOB5
data structure is used with SSubmitJobEx5. The data structures are identical except for the calling
conventions used for the callback functions.

typedef struct {
DWORD Version; // Version of the data structure
DWORD Extended; // Extended attributes
void* Context; // Application data for callbacks

// Callback for progress messages
void (*Progress) (void* Context, TCHAR *);

// Callback for warnings
BOOL (*Warning) (void* Context, TCHAR *);

// Callback for filename validation
TCHAR *(*ValidateFileName) (void* Context, TCHAR *, BOOL);

 // Callback for data exchange
TCHAR *(*ExchangeData) (void* Context, TCHAR *, TCHAR *);

TCHAR *Reserved1;
TCHAR *SessionID; // ITP/Server session ID
TCHAR *Reserved2;
} SUBMITJOB4;

typedef struct {
DWORD Version; // Version of the data structure
DWORD Extended; // Extended attributes
void* Context; // Application data for callbacks

// Callback for progress messages
void (__stdcall *Progress) (void* Context, TCHAR *);

// Callback for warnings
BOOL (__stdcall *Warning) (void* Context, TCHAR *);

46

Kofax Communications Manager Core Developer's Guide

// Callback for filename validation
TCHAR *(__stdcall *ValidateFileName) (void* Context, TCHAR *, BOOL);

 // Callback for data exchange
TCHAR *(__stdcall *ExchangeData) (void* Context, TCHAR *, TCHAR *);

TCHAR *Reserved1;
TCHAR *SessionID; // ITP/Server session ID
TCHAR *Reserved2;
} SUBMITJOB5;

Version field indicates which other members of the data structure are valid. Currently, the only supported
value is SUBMITJOB_4 for the SUBMITJOB4 data structure, and SUBMITJOB_5 for the SUBMITJOB5 data
structure.

Extended attributes for the APIs that can be a combination of any of the values described in the
following table.

Value Meaning

0 No extended attributes apply.

OPTION_QUERY_CODEPAGE The API is allowed to send its codepage to the KCM
Core server.

OPTION_RECEIVE_FILE The API is allowed to receive files from the KCM Core
server.

OPTION_SEND_FILE The API is allowed to send files to the KCM Core server.

OPTION_CONFIRM_DISCONNECT The caller requires that KCM Core waits for confirmation
after reporting a successful job. This option guarantees
that the confirmation has been received by the client
before KCM Core starts another job. Failure during this
disconnect exchange reports the job as failed, but does
not trigger an OnError statement.

OPTION_EXCHANGE_DATA The API is allowed to exchange data with the KCM Core
server.

OPTION_VERIFY_CONNECTION The API is Verify Connection enabled.

OPTION_TCP_NODELAY Disables the packet size optimizations done by the
Nagle algorithm. This option improves responsiveness
significantly at the cost of increased network traffic.
This option has an effect only if the network connection
is between different virtual computers. Connections over
the local host/loopback interface are never buffered.
Use with caution.

OPTION_ALL_DPS The job is submitted to run once on all available KCM
Document Processors.

Context may hold a pointer to arbitrary data defined by the application. It is not used by the API
function. It is passed as the Context parameter to the callback functions Progress, Warning,
ValidateFileName, and ExchangeData. You can use it to pass extra, application defined information
to these callback functions.

47

Kofax Communications Manager Core Developer's Guide

Progress is a pointer to a callback function called by the API whenever the server sends back a progress
message. This progress message is passed as parameter to the function Progress. When called, the
function is passed the Context member field of the SUBMITJOB4/5 structure in the Context parameter.
This function is NULL if the application does not want to receive progress messages.

Warning is a pointer to a callback function called by the API whenever it encounters a recoverable error.
This error is passed as a parameter to the function Warning. This function returns TRUE if it wants to
continue, and FALSE if the call should be terminated. When called, the function is passed the Context
member field of the SUBMITJOB4/5 structure in the Context parameter.

This function can be NULL if the application wants to ignore recoverable errors. The errors are still passed
to the KCM Core server but the script can choose to ignore them using the command OnError.

ValidateFileName is a pointer to a callback function called by the API whenever the server wants
to receive or send a file from the client. For more information on ValidateFileName, see
ValidateFileName.

When called, the function is passed the Context member field of the SUBMITJOB4/5 structure in the
Context parameter. This function is NULL if the application does not need to validate file names. In this
situation, all suggested file names are accepted.

ExchangeData is a pointer to a callback function called by the API whenever the server wants to
exchange data with the client. For more information, see ExchangeData.

When called, the function is passed the Context member field of the SUBMITJOB4/5 structure in the
Context parameter. This function is NULL if the application does need to exchange data. In this situation,
all attempts to exchange data succeed and return an empty response.

QuickInfo

Header, declared in s_api.h and p_api.h.

Import Library, use sock_api.lib.

Unicode, implemented as both Unicode and ASCII.

ValidateFileName
The ValidateFileName callback function should be provided by an application to validate file transfers
between the client and the KCM Core server. If provided, the ValidateFileName function is called
before every transfer to allow the application to convert the passed file name and to determine whether
the transfer should be allowed.

TCHAR * (*ValidateFileName) (
 void *Context, // Context field of structure
TCHAR *FileName, // suggested filename
BOOL TransferMode // transfer modus
);

The function has the following parameters:
• Context. This is an application defined data. This parameter gets the value of the Context field of the
SUBMITJOB4/ SUBMITJOB5 structure.

• FileName. This is the file name for the transferred file as suggested or requested by the KCM Core
server.

48

Kofax Communications Manager Core Developer's Guide

• TransferMode flag. Indicates the type of transfer requested by the KCM Core server. TransferMode is
TRUE if the client should receive a file from the KCM Core server, and FALSE if the KCM Core server
needs to request a file.

The ValidateFileName should return a pointer to the file name the API should transfer.

The ValidateFileName can return NULL if it needs to refuse the transfer. KCM Core terminates the
transfer with the message that the client refused the transfer.

If ValidateFileName needs to accept the transfer without modifications in the file name, it returns the
FileName pointer. If it needs to modify the file name, it provides memory that remains allocated until either
the next call to ValidateFileName or until the API returns.

The calling convention of the ValidateFileName function is cdecl when it is passed through
the SUBMITJOB4 data structure to SSubmitJobEx4, and std call when it is passed through the
SUBMITJOB5 data structure to SSubmitJobEx5.

QuickInfo

Header, N/A.

Import Library, N/A.

Unicode, N/A.

ExchangeData
The ExchangeDatacallback function is provided by a business application to exchange data with the
KCM Core server. If provided, the ExchangeData function is called for every exchange_data function
call. The client can then process the data and send a response back.

TCHAR * (*ExchangeData) (
void *Context, // Context field of structure
TCHAR *Key, // The Key parameter
TCHAR *Value // The Value parameter
);

The function has the following parameters:

Context. This is an application defined data. This parameter gets the value of the Context field of the
SUBMITJOB4/ SUBMITJOB5 structure.

Key. The k parameter of the exchange_data function.

Value. The v parameter of the exchange_data function.

The ExchangeDatafunction function returns a pointer to the response it needs to send back to the
KCM Core server. The memory this pointer refers to must remain allocated until either the next call to
ExchangeData or until the API returns.

The ExchangeDatafunction function returns NULL to indicate that the data was processed
successfully without sending a specific response. In this situation, the function exchange_data returns
an empty text.

49

Kofax Communications Manager Core Developer's Guide

The calling convention of the ExchangeData function is cdecl when it is passed through the
SUBMITJOB4 data structure to SSubmitJobEx4, and stdcall when it is passed through the
SUBMITJOB5 data structure to SSubmitJobEx5.

QuickInfo

Header, N/A.

Import Library, N/A.

Unicode, N/A.

Error codes
The error messages returned by the APIs in the result buffer commonly contain a decimal error code.
Windows returns these error codes if an operation fails.

For a full list of error codes, see the corresponding Windows references.

Some common error codes are described in the following table.

Code Description Likely cause

10054 Connection reset Your system is not authorized to
connect to the Service.

10061 Connection refused The host or port you tried to access
is not correct or KCM Core is not
started.

Saclient.exe and swclient.exe
The command line programs saclient.exe and swclient.exe are provided to facilitate submitting a job to
KCM Core using TCP/IP.

Saclient submits a job to KCM Core using TCP/IP sockets from an ASCII environment and swclient does
the same from a Unicode environment.

Starting saclient on a command line without parameters returns all options and the syntax.

Usage: saclient.exe [-s|-r|-t|-c|-e|-k|-d|-i
sessionID|-a] host port jobid service [parameters]

The following table describes options that you can use.

-s Sends a synchronous request

-r Allows the client to receive files from the server [implies -s]

-t Allows the client to send files to the server [implies -s]

-c Confirms disconnect

-e Enables the exchange_data function calls [implies -s]

-k Enables Verify Connection (This corresponds to OPTION_VERIFY_CONNECTION extended attributes
of the SUBMITJOB4/ SUBMITJOB5 data structure).

50

Kofax Communications Manager Core Developer's Guide

-d Disables the packet size optimizations done by the Nagle algorithm. This option improves
responsiveness significantly at the cost of increased network traffic

-i Runs the job in the KCM Core session specified by the given session ID

-a Runs the job once on every available KCM Document Processor [disables -s]

For a complete description of these settings, see SUBMITJOB4 and SUBMITJOB5.

In addition to saclient.exe and swclient.exe, a third program called winclient.exe is provided. This is
a variation of saclient.exe, created to solve specific printer switching problems with saclient.exe in a
Windows environment. You should use saclient.exe instead.

.NET library
The KCM Core .NET library allows .NET applications to submit jobs to KCM Core. The API is provided in
the form of the .NET assembly ITPServerDotNetApi.dll. To learn how to build and distribute applications
using the KCM Core .NET library, see .NET library installation and distribution.

The main class of the .NET library is called Aia.ITP.Server.Job. This class provides all functionality
needed for job submission. See the following sections for details on the methods, properties and events
of the class Aia.ITP.Server.Job. The .NET library also includes the class Aia.ITP.OnLine.Model
that implements the KCM ComposerUI Server .NET API. For more information on the KCM ComposerUI
Server .NET API, see the legacy Kofax Communications Manager ComposerUI for ASP.NET Developer's
Guide.

.NET library installation and distribution
The KCM Core .NET library is designed for the .NET Framework 3.5. The assembly for the KCM
Core .NET library is not a strongly named assembly and it cannot be deployed in the Global Assembly
Cache. It must always be deployed as a private assembly together with the application that uses it. The
library is also not exposed through COM, which means that it can only be called from .NET applications.

As the implementation of the KCM Core .NET library is based on the TCP/IP API, the .NET assembly
should be deployed together with the files that comprise the KCM Core TCP/IP API. If the application may
be run on 64-bit Windows platforms, it is important that both the 32-bit and the 64-bit versions of the KCM
Core TCP/IP API are deployed.

To deploy the KCM Core .NET library, copy the following files to the directory of the application that uses
the library:
• ITPServerDotNetApi.dll
• sock_api.dll
• sock_api64.dll

Aia.ITP.Server.Job class
The class Aia.ITP.Server.Job represents a job submission to KCM Core. It contains all functionality
required to:
• Submit jobs to KCM Core
• Upload and download files to KCM Core

51

Kofax Communications Manager Core Developer's Guide

• Exchange data values with KCM Core
• Receive progress messages from KCM Core

An example of the usage is provided here.

Aia.ITP.Server.Job job;
job = new Aia.ITP.Server.Job("localhost",
 "3001",
 "MyJob_" + Guid.NewGuid().ToString(),
 "MyService",
 "FirstParameter",
 "SecondParameter");
try
{
 job.Submit();
}
catch (Exception e)
{
 MessageBox.Show ("Error", "An error occurred in an ITP/Server job: " + e.Message);
}

This example creates an Aia.ITP.Server.Job object in order to call the KCM Core Service
"MyService" with the parameters FirstParameter and SecondParameter. The job submission is
destined for the KCM Core running on computer "localhost" (the local computer) on port 3001, with a
randomly generated unique job ID based on a GUID (Globally Unique ID).

The class Aia.ITP.Server.Job exposes the following methods:
• Job (String host, String port, String jobID, String Service, String parameters) (constructor)
• Submit ()

• SubmitAsync ()

For more information on these methods, see Job method, Submit () method, and SubmitAsync () method,
respectively.

Job method
The Job method is the constructor of the class Aia.ITP.Server.Job. Its parameters host, port,
jobID and service represent exactly the mandatory parameters of a KCM Core job submission. The
final parameter parameters is a variable-length list of parameters passed to the KCM Core Service. For
parameters, the empty string ("") is interpreted as if the parameter was not passed, which causes the
default value to be substituted (if any). After the object is constructed, the parameters of the constructor
are stored in the properties Host, Port, JobID, Service, and Parameters, respectively.

This constructor does not submit the job to KCM Core, it only constructs an Aia.ITP.Server.Job
object with some properties already set to the values passed to the constructor. After constructing the
Aia.ITP.Server.Job object, there is an opportunity to set optional properties and register event
handlers. The job can then be submitted to KCM Core using the methods Submit() or SubmitAsync().

Submit () method
The method Submit of the class Aia.ITP.Server.Job submits the job to KCM Core running on the
host and port specified by the properties Host and Port. The method does not return until the job has
been completed. If the method returns normally, this means that the job has completed successfully. If an
error occurs during either the submission or the processing of the job, an exception is thrown.

52

Kofax Communications Manager Core Developer's Guide

While the job is running, the invoked KCM Core Service may request to exchange a data value, and
it may send files for download, request the upload of files or send progress messages. When such
requests arrive, the object Aia.ITP.Server.Job fires the events ExchangeData, FileDownload,
FileUpload, and ProgressMessage, respectively.

Note If the KCM Core Service requests the download or upload of a file, and the corresponding event is
not handled, the KCM Core job fails immediately.

SubmitAsync () method
The method SubmitAsync of the class Aia.ITP.Server.Job submits the job to the KCM Core running
on the host and port specified by the properties Host and Port. The method returns immediately after the
job has been submitted, without waiting until the job has been processed. If the method returns normally,
this means that the job was submitted successfully. If an error occurs during the submission of the job, an
exception is thrown. If an error occurs during the processing of the job, this is not reported.

In contrast to the method Submit, the method SubmitAsync does not allow for the exchange of data
values, files, or progress messages with KCM Core. If these mechanisms are needed, the method
Submit must be used instead.

The class Aia.ITP.Server.Job exposes the following properties:
• Host
• Port
• JobID
• Service
• Parameters
• SessionID
• ConfirmCompletion
• KeepAlive
• NoDelay
• PrivateTransfer
• UserID
• ApplicationID

The property Host is a string that specifies the host name of the machine running KCM Core. You can
specify the name either in (IPv4) Internet Protocol dotted address notation (a.b.c.d), or as a resolvable
host name.

The property Port is a string that specifies the port number on which KCM Core is running. You can
specify the port either in numerical format or as a Service name resolved through any available Service
databases.

The property JobID is a string used to identify the job on KCM Core. Also, it appears in the KCM Core log
files in all log lines that describe the job run.

The property Service is a string that specifies the name of KCM Core Service that the job should invoke.

The property Parameters is a read-only property of type List<String>. It contains the list of
parameters passed to the KCM Core Service. To add or remove parameters, manipulate the object

53

Kofax Communications Manager Core Developer's Guide

List<String> returned by this property, using the standard methods provided by the .NET Framework.
Parameters cannot be null. The empty string is interpreted as if the parameter was not passed, which
causes the default value to be substituted (if any).

The property SessionID is a string that specifies the KCM Core session ID that will be associated with
the submitted job. KCM Core session IDs serve multiple purposes:
• Mutual exclusion. The KCM Core guarantees that multiple requests for the same session ID are not

handled in parallel by multiple Document Processors. Instead, multiple simultaneous requests with the
same session ID are queued and processed in a series.

• Persistent storage across jobs. KCM Core Services may use the session ID to store information across
several KCM Core jobs, so that each job can use data stored by earlier jobs.

You can specify session IDs for mutual exclusion by the calling the client. Session IDs for persistent
storage are always generated by KCM Core and must be sent to the calling client using the mechanism
exchange_data. For convenience, the class Aia.ITP.Server.Job allows the KCM Core Service
to pass a session ID using the mechanism exchange_data and using the key "SessionID" (case-
insensitive). The data value of such a data exchange request is automatically stored in the property
SessionID of the object Aia.ITP.Server.Job. This functionality works regardless of whether the
ExchangeData event is being handled.

For more information about the use of session IDs in KCM Core, see the section "KCM Core sessions" of
the Kofax Communications Manager Core Scripting Language Developer's Guide.

The boolean property ConfirmCompletion specifies that KCM Core should not regard the job as
completed until the client, such as the object Aia.ITP.Server.Job, has confirmed to KCM Core that
it has received the message stating that the job has completed. This setting has no effect when the job is
submitted using SubmitAsync. This property is set to false by default.

The boolean property KeepAlive specifies that the Aia.ITP.Server.Job object should send
confirmation messages to KCM Core to indicate that it is still listening, upon request from KCM Core. This
setting corresponds to the setting "Verify connection" that you can find on the Advanced tab of KCM Core
Administrator. This setting has no effect when the job is submitted using SubmitAsync. The property is
set to false by default.

The boolean property NoDelay specifies that the underlying TCP/IP connection to KCM Core should
not use Nagle's algorithm to put as much data as possible into a single network packet. Enabling this
option significantly reduces network latency, but also leads to a significant increase in network traffic. The
property is set to false by default.

The boolean property PrivateTransfer specifies that the KCM Core load balancer should be bypassed
for file transfers. Enabling this option may increase performance for large file transfers. The property is set
to false by default.

The properties UserID and ApplicationID are strings used for the submission of KCM ComposerUI
Server jobs. UserID specifies the user name of the user connected to KCM ComposerUI Server while the
ApplicationID identifies the KCM ComposerUI Server application that submits the job. It is not necessary
to specify these properties.

54

Kofax Communications Manager Core Developer's Guide

ExchangeData event
The event ExchangeData fires during the processing of a job when KCM Core needs to exchange a data
value using the KCM Core script function exchange_data. Handlers of the event ExchangeData should
be of the type Aia.ITP.Server.Job.ExchangeDataHandler.

 delegate string ExchangeDataHandler (string key,string value)

An ExchangeData handler receives two parameters: key and value. The parameter key identifies the
value being passed, and the parameter value specifies the actual value being passed. The value returned
from the event handler ExchangeData is returned to the KCM Core Service.

Regardless of whether the event ExchangeData is being handled, any value passed from KCM Core
with key "SessionID" (case-insensitive) is copied to the property SessionID.

FileDownload
The event FileDownload fires during the processing of a job when KCM Core needs to send
a file to the client application. Handlers of the FileDownload event should be of the type
Aia.ITP.Server.Job.FileDownloadHandler.

 delegate string FileDownloadHandler(string filename);

A FileDownload handler receives a parameter file name that specifies a suggestion for the name of the
file being sent by KCM Core. The return value of the handler should be the name of the file as which the
downloaded file will be stored. It is also possible to refuse the download by returning null or throwing an
exception. This causes the KCM Core job to fail immediately. If no event handler is installed for the event
FileDownload and KCM Core tries to send a file for download, the job fails as well.

FileUpload
The event FileUpload fires during the processing of a job when KCM Core wants to request
a file from the client application. Handlers of the event FileUpload should be of the type
Aia.ITP.Server.Job.FileUploadHandler.

delegate string FileUploadHandler(string filename);

A FileUpload handler receives a parameter filename that indicates the file that is being requested by
KCM Core. The return value of the handler should be the name of the actual file that will be uploaded to
KCM Core. It is also possible to refuse the upload by returning null or throwing an exception. This causes
the KCM Core job to fail immediately. If no event handler is installed for the event FileUpload and KCM
Core tries to request an upload, the job fails as well.

ProgressMessage
The event ProgressMessage fires during the processing of a job when the KCM Core wants to send a
progress message to the client application. Handlers of the event ProgressMessage should be of the
type Aia.ITP.Server.Job.ProgressMessageHandler.

 delegate void ProgressMessageHandler(string text);

A ProgessMessage handler receives the message from KCM Core in the parameter text.

55

Kofax Communications Manager Core Developer's Guide

TCP/IP for the IBM i platform
The KCM Core IBM i connection includes the IBM i command SBMITPJOB in the library ITPCOM31. You
can use this command to submit a request to a remote KCM Core Service.

>>-SBMITPJOB--->

>--SERVICE(--Name of the Service called--)----------------------->

>-+------------------------------------+------------------------->
 | .------------------------. |
 | V (3) | |
 '--PARS(----script-parameter------+-)'

>-HOST(--+-hostname--+--)--PORT(--+-service-name-+--)------------>
 '-ip-number-' '-port-number--'

>--JOBID(--job-identifier--)-------+--------------------+-------->
 | .-*NO--. | (4)
 '-SYNC(--+-*YES-+--)-'

>--+----------------------------+-------------------------------->
 | (1) .-*NO--. |
 '------CONFIRM(--+-*YES-+--)-'

>--+----------------------------+--+-------------------------+--->
 | (1) .-*NO--. | | (1) .-*NO--. |
 '------RECEIVE(--+-*YES-+--)-' '------SEND(--+-*YES-+--)-'

>--+--------------------+--+-------------------+----------------->
 | .-*YES-. | | .-*NO--. |
 '-MSG-(--+-*NO--+--)-' '-LOG(--+-*YES-+--)-'

>--+--+-------------->
 | (1) .-*LIBL/-------. |
 '------XCHFIL(--+--------------+--file-name--)-'
 '-library-name/'

>--+---+----------->
 | (1) .-*LIBL/-------. |
 '------XCHPGM(--+--------------+--program-name--)-'
 '-library-name/'

>--+-----------------------+--+--------------------------+------->
 | .-*DNS-. | | .-*MAP---. |
 '-RESOLVE(--+-*IP--+--)-' '-CODEPAGE(--+-*HEX---+--)-'
 +-*JOB---+
 '-number-'

When using this functionality, consider the following:
• This functionality is only supported by the client if SYNC(*YES) is specified.
• This functionality is only supported by the client if either RECEIVE(*YES) or SEND(*YES) is specified.
• You can specify up to 32 parameters of up to 4095 characters can be specified.
• Parameters past this point are not prompted by default.

56

Kofax Communications Manager Core Developer's Guide

The SBMITPJOB has the following parameters:
• SERVICE

Required. Specifies the name of the Service that the job is submitted to.

• PARS
Optional. Specifies up to 32 parameters for the job. Every parameter can contain up to 4095 characters.

• HOST
Required. Specifies the host name of the remote host running the KCM Core.

• PORT
Required. Specifies the KCM Core port number or port name.

• JOBID
Required. The Job ID used to identify the job in the KCM Core queue. This parameter cannot be blank.

• SYNC
Optional. Specifies whether the command waits until KCM Core has processed the job. *YES: Wait until
the job is completed. *NO: Terminate after the server has acknowledged receipt of the job.

• CONFIRM
Optional. Specifies whether the client must confirm termination of the job back to KCM Core before
the job is considered to be completed successful. *YES: Require confirmation. *NO: Do not require
confirmation.
This option is only used if SYNC(*YES) is specified.

• RECEIVE
Optional. Specifies whether the client is allowed to receive files from KCM Core. *YES: The client
is allowed to receive files. *NO: The client is not allowed to receive files. Any attempts to use the
SendFile command in a KCM Core script will fail.
This option is only used if SYNC(*YES) is specified.

• SEND
Optional. Specifies whether the client is allowed to send files to KCM Core. *YES: The client is allowed
to send files. *NO: The client is not allowed to send files. Any attempts to use the ReceiveFile
command in a KCM Core script will fail.
This option is only used if SYNC(*YES) is specified.

• MSG
Optional. Specifies if the command sends progress messages to its caller. *YES: Send messages to the
caller. *NO: No messages are sent.
If the MSG(*YES) parameter is specified, the SBMITPJOB command can send the following messages
to the calling program:

1. A single completion message if the command terminated successfully.

2. A single escape message if the command failed.

57

Kofax Communications Manager Core Developer's Guide

3. Informational messages if KCM Core sent progress messages to the AS/400 client.

• LOG
Optional. Specifies if the command logs messages in the REQHST file. *YES: All messages are logged.
*NO: No messages are logged.

• XCHGFIL
Optional. Specifies to which file the client writes the data sent with the exchange_data function. If this
parameter is not specified data is not written to a file.
SBMITPJOB sends an empty response back to the KCM Core unless the XCHGPGM parameter is also
specified. In that case the response of the XCHGPGM exit program is sent back.

• XCHGPGM
Optional. Specifies which exit program the client should call if data is sent with the exchange_data
function. If this parameter is not specified, no exit programs are called.
SBMITPJOB sends an empty response back to KCM Core unless the XCHGPGM parameter is
specified. In that case the response of the XCHGPGM exit program is sent back.

• RESOLVE
Optional. Specifies in which order the host name specified with the HOST(...) parameter is resolved.
*DNS: First attempt to resolve the host name through any configured DNS server, and then attempt to
translate the address as a numerical IP address.
*IP: First attempt to translate the address as a numerical IP address and then attempt to resolve the
host name through any configured DNS server.

• CODEPAGE
Optional. Specifies how the client should send its code page back to the KCM Core if the script requires
a client code page.

*MAP: Attempt to map all characters to Unicode and send this mapping to the KCM Core.

*HEX: Do not perform a code page translation.

*JOB: Send the code page of the job. If the job uses CCSID *HEX, the system code page is sent. If the
system also uses CCSID *HEX, no code page translation is performed.

number: Send a specific code page number to the server. This option requires that the code page
translation table must be available to KCM Core.

Note The exchange_data function call in a KCM Core script fails unless the SBMITPJOB command
specified either a XCHGPGM or XCHGFIL parameter.

The SBMITPJOB program accesses and creates files through the Integrated File System (IFS).
• To access /folder1/folder2/document.ext in QDLS, use /QDLS/folder1/folder2/document.ext
• To access /folder1/folder2/file.ext in IFS, use /folder1/folder2/file.ext
• To access member MYMBR in MYLIB/MYFILE, use /QSYS.LIB/MYLIB.LIB/MYFILE.FILE/
MYMBR.MBR

If no path is specified, files are stored in the root of the IFS file system.

An example is provided here.

58

Kofax Communications Manager Core Developer's Guide

SBMITPJOB
 SERVICE ('a service')
 PARS('key info' 34)
 HOST('10.0.0.11')
 PORT(3001)
 JOBID('AS/400 Job')
 SYNC(*YES)

This command sends a request to the Service 'a service' configured in KCM Core that runs on
10.0.0.11 with external port 3001. The job has Job ID 'AS/400 Job' and two parameters ('key info'
and 34). The SBMITPJOB command waits until the request has been processed.

REQHST file
If the LOG(*YES) parameter is specified, the SBMITPJOB command logs status information in the file
REQHST. This file must be in the library list.

This file has the following format:

R REQHST
 SERVICE 64 TEXT('Service')
 USER 10 TEXT('User')
 HOST 64 TEXT('Host')
 PORT 16 TEXT('Port')
 JOBID 32 TEXT('Job ID')
 DATE 8 0 TEXT('Date')
 TIME 6 0 TEXT('Time')
 SYNC 1 TEXT('Synchronous request')
 STATUS 1 TEXT('Status')
 MESSAGE 1024 TEXT('Message text')

The STATUS field indicates the type of message:
• C Successful completion
• D Received a file from KCM Core. The MESSAGE field contains the file name on the IBM i host.
• F Failure
• P Progress message from KCM Core
• S Startup message. This message is logged for every request.
• U Sent a file to KCM Core. The MESSAGE field contains the file name on the IBM i host.

XCHGFIL file
If the XCHGFIL parameter is used, SBMITPJOB writes all exchanged information to the specified file. This
file must have the following format.

R EXCHANGE
 JOBID 32 TEXT('Job ID')
 KEY 64 TEXT('Key')
 VALUE 1024 TEXT('Value')

The record format is named EXCHANGE.

The caller is responsible for creating this file.

59

Kofax Communications Manager Core Developer's Guide

XCHGPGM exit program
If the XCHGPMG parameter is used, SBMITPJOB calls the specified program as an exit program
whenever information is exchanged. This exit program can specify a response, which is sent back to KCM
Core.

The exit program must have the following interface in CL format:

PGM PARM(&JOBID &KEY &VALUE &RESPONSE)

DCL VAR(&JOBID) TYPE(*CHAR) LEN(32) /* Input */
DCL VAR(&KEY) TYPE(*CHAR) LEN(64) /* Input */
DCL VAR(&VALUE) TYPE(*CHAR) LEN(1024) /* Input */
DCL VAR(&RESPONSE) TYPE(*CHAR) LEN(1024) /* Output */

ENDPGM

Java submission interface

Job class
The following is a public class job that extends java.lang.Object. This class implements an interface
on KCM Core for job submission.

java.lang.Object
 |
 +--com.aia_itp.itpdsapi.Job

The following example shows how to submit a job to a local KCM Core server to run a template. The
result document is returned in PDF format for which the ITPDSDataReceiver interface is implemented. For
the KCM Core Service, the following parameters are defined:
• Template to be executed.
• XML data input for the template.

The KCM Core Service is configured on port 5335.

 import com.aia_itp.itpdsapi.*;
 import java.io.*;

 class MyClass implements ITPDSDataReceiver {
 static String PORT_ITPSERVER= "3001";

 public void ProduceDocument(String model, String xmldata) throws Exception {
 Job j = new Job("127.0.0.1", PORT_ITPSERVER);
 j.addParameter("RunMdlPdf"); // Service name
 j.addParameter(model);
 j.addParameter(xmldata);
 j.setAdvancedCapabilities(null, this);
 if(!j.submit(true)){
 throw new Exception(j.getLastError());
 }
 }

 public OutputStream ITPDSReceiveData(String DataItem)
 {

60

Kofax Communications Manager Core Developer's Guide

 try
 {
 return new BufferedOutputStream(new FileOutputStream("/temp/myfile.pdf"));
 }
 catch (FileNotFoundException e)
 {
 return null;
 }
 }

 public void ITPDSReceiveDataFinished(String DataItem, OutputStream out){
 try
 {
 out.close();
 }
 catch (IOException e)
 {
 }
 }

 }

The following job creates a KCM Core job for a KCM Core server and instance specified by host and port.

 public Job(java.lang.String host, java.lang.String port)

The job has two parameters:

1. host. IP address or host name of the KCM Core server

2. port. Port on which the KCM Core instance is configured on the server

The following job creates a KCM Core job for a KCM Core server and instance specified by host and
port. The job is identified by a specified jobID.

public Job(java.lang.String host,java.lang.String port, java.lang.String jobID)

The job has three parameters:

1. host. IP address or host name of the KCM Core server

2. port. Port on which the KCM Core instance is configured on the server

3. jobID. ID identifying the job. This ID is shown in the monitor and in the log

Methods

The Java submission interface includes the following methods.
• setProgressListener

public void setProgressListener(ProgressListener audience)

This method enables ProgressListener for this KCM Core job. ProgressListener receives all
progress events.

61

Kofax Communications Manager Core Developer's Guide

The method has one parameter:

1. audience. Object implementing the ProgressListener interface.

• setAdvancedCapabilities

public void setAdvancedCapabilities(ITPDSDataSender sender,ITPDSDataReceiver receiver)

This method tells the server that this client implements advanced capabilities.

It has two parameters:

1. sender. Object implementing the ITPDSDataSender interface.

2. receiver. Object implementing the ITPDSDataReceiver.

• setAdvancedCapabilities

public void setAdvancedCapabilities(ITPDSDataSender sender,ITPDSDataReceiver
 receiver,ITPDSExchangeData
exchange_data)

This method tells the server which advanced capabilities this client implements.

It has three parameters:

1. sender. Object implementing the ITPDSDataSender interface.

2. receiver. Object implementing the ITPDSDataReceiver interface.

3. exchange_data. Object implementing the ITPDSExchangeData interface.

• setConfirmDisconnect

public void setConfirmDisconnect(boolean confirm_disconnect)

This method configures whether the disconnect from the server is confirmed.
• addParameter

public void addParameter(java.lang.String parameter)

This method adds a single parameter string to the parameter list for this job.

It has one parameter:

1. parameter. Job parameter.

• setParameters

public void setParameters(java.lang.String[] parameters)

This method sets the list of job parameters.

It has one parameter:

1. parameters. An array of job parameters (strings).

• clearParameters

public void clearParameters()

62

Kofax Communications Manager Core Developer's Guide

This method clears the parameter list.
• setHost

public void setHost(java.lang.String host)

This method sets the KCM Core server for this job.

It has one parameter:

1. host. IP address or host name of the KCM Core server.

• setPort

public void setPort(java.lang.String port)

This method sets the KCM Core instance port for this job.

It has one parameter:

1. port. Port using which the KCM Core instance is configured on the server.

• setServer

public void setServer(java.lang.String host, java.lang.String port)

This method sets the KCM Core server and instance for this job.

It has two parameters:

1. host. IP address or host name of the KCM Core server.

2. port. Port using which the KCM Core instance is configured on the server.

• setJobID

public void setJobID(java.lang.String jobID)

This method sets the KCM Core job identifier for this job.

It has one parameter:

1. jobID. Job identifier.

• setSessionID

public void setSessionID(java.lang.String sessionID)

This method sets the KCM Core session identifier for this job.

It has one parameter:

1. sessionID. Session identifier.

• getParameters

public java.lang.String[] getParameters()

This method returns the current parameter list for this job.
• getHost

63

Kofax Communications Manager Core Developer's Guide

public java.lang.String getHost()

This method returns KCM Core server for this job.
• getPort

public java.lang.String getPort()

This method returns KCM Core instance port for this job.
• getJobID

public java.lang.String getJobID()

This method returns KCM Core job identifier for this job.
• getSessionID

public java.lang.String getSessionID()

This method returns KCM Core session identifier for this job.
• getLastError

public java.lang.String getLastError()

This method returns the last known error if there is one.
• submit

public boolean submit(boolean sync)

It throws java.lang.Exception.

You can use this method to submit a job to KCM Core using the properties and parameters specified in
the job. This method returns TRUE if the job was asynchronous and the job was queued, or if the job
was synchronous and successfully finished processing. If the job was synchronous and did not complete
successfully, the method returns FALSE. If the job is asynchronous, the connection is closed after the job
is queued, denying all possibilities for progress information and data transfers.

It has one parameter:

1. sync. Specifies whether the job is submitted synchronously or asynchronously.

• submit

public boolean submit(boolean sync, java.lang.String user)

It throws java.lang.Exception.

This method is used to submit a job to KCM Core using the properties and parameters specified in the
job. This method returns TRUE if the job was asynchronous and the job was queued, or if the job was
synchronous and successfully finished processing. If the job was synchronous and did not complete
successfully, the method returns FALSE. If the job is asynchronous, the connection is closed after the job
is queued, denying all possibilities for feedback and other transfers, such as that of files.

It has two parameters:

1. sync. Specifies whether the job is submitted synchronously or asynchronously.

64

Kofax Communications Manager Core Developer's Guide

2. user. Submits the job with this userid. The userid does not have to exist.

• submit

public boolean submit(boolean sync, int ByteCoding)

It throws java.lang.Exception.

This method is used to submit a job to KCM Core using the properties and parameters specified in
the job. This method returns TRUE if the job was asynchronous and the job was queued, or if the job
was synchronous and successfully finished processing. If the job was synchronous and not completed
successfully, false will be returned instead. If the job is asynchronous, the connection is closed after the
job is queued, denying all possibilities for feedback and other transfers, such as that of files.

It has two parameters:

1. sync. Specifies whether the job is submitted synchronously or asynchronously.

2. ByteCoding. Submits the job using this byte coding. ByteCoding can be either
ITPDS.RQST_IN_ASCII or ITPDS.RQST_IN_UNICODE.

• submit

public boolean submit(boolean sync, java.lang.String user, int
byteCoding)

It throws java.lang.Exception.

This method is used to submit a job to KCM Core, using the properties and parameters specified in the
job. This method returns true if the job was asynchronous and the job was queued, or if the job was
synchronous and successfully finished processing. If the job was synchronous and did not complete
successfully, the method returns FALSE. If the job is asynchronous, the connection is closed after the job
is queued, denying all possibilities for feedback and other transfers, such as that of files.

It has three parameters:

1. sync. Specifies whether the job is submitted synchronously or asynchronously.

2. user. Submits the job with this userid. The userid does not have to exist.

3. ByteCoding. Submits the job using this byte coding. ByteCoding can be either
ITPDS.RQST_IN_ASCII or ITPDS.RQST_IN_UNICODE.

ITPDS class
The ITPDS class is a public class that extends java.lang.Object. constants for using the
com.aia_itp.itpdsapi package.

java.lang.Object
 |
 +--com.aia_itp.itpdsapi.ITPDS

Fields

The ITPDS class has the following fields.
• RQST_IN_ASCII

65

Kofax Communications Manager Core Developer's Guide

This is a public static final int. It identifies that the job is submitted in ASCII.
• RQST_IN_UNICODE

This is a public static final int. It identifies that the job is submitted in Unicode by default.

The constructor of the ITPDS class is public ITPDS().

ITPDSDataReceiver interface
ITPDSDataReceiver is a public interface.

The ITPDSDataReceiver interface provides for receiving binary data from the KCM Core server. This is
typically the result document of a KCM process.

This interface is used to receive data send by Src(…) Dest(…) of the SendFile command.

import com.aia_itp.itpdsapi.*;
 import java.io.*;

 class MyClass implements ITPDSDataReceiver
 {

 public OutputStream ITPDSReceiveData(String DataItem)
 {
 try
 {
 return new BufferedOutputStream(new FileOutputStream("/temp/myfile.pdf"));
 }
 catch(Exception e)
 {
 return null;
 }
 }

 public void ITPDSReceiveDataFinished(String DataItem, OutputStream out)
 {
 try
 {
 out.close();
 }
 catch(Exception e)
 {
 }
 }

 }

Methods
The ITPDSDataReceiver includes the following methods.
• ITPDSReceiveData

public java.io.OutputStream ITPDSReceiveData(java.lang.String DataItem)

66

Kofax Communications Manager Core Developer's Guide

This method is called when the KCM Core server executes the SendFile command. This method returns
either null to indicate that it does not want to receive the data or an OutputStream object to which the
data is written.

It has one parameter:

1. DataItem. The client parameter as passed in Src(...) Dest(...) of the SendFile command.

• ITPDSReceiveDataFinished

public void ITPDSReceiveDataFinished(java.lang.String DataItem,
java.io.OutputStream out)

This method is called when receipt of the data has been finished. When this method is called, all data
has been written to OutputStream returned by ITPDSReceiveData. It is typically used to close the
OutputStream object.

It has one parameter:

1. DataItem. The client parameter as passed in Src(...) Dest(...) of the SendFile command.
out. The OutputStream object as returned by ITPDSReceiveData.

ITPDSDataSender interface
ITPDSDataSender is a public interface.

The ITPDSDataSender interface provides for sending binary data to the KCM Core server. This is
typically the XML stream used as data input for a KCM process.

This interface is used to send data when it is requested by Src(...) Dest(...) of the ReceiveFile
command.

import com.aia_itp.itpdsapi.*;
 import java.io.*;

 class MyClass implements ITPDSDataSender
 {

 public ITPDSInputStream ITPDSSendData(String DataItem)
 {
 try
 {
 // We're going to 'read' the file corresponding to 'DataItem'...
 java.io.File f = new java.io.File(DataItem + ".xml");
 InputStream stream = new BufferedInputStream(new FileInputStream(f));
 return new ITPDSInputStream(stream, (int)f.length());
 }
 catch(Exception e)
 {
 return null;
 }
 }

 public void ITPDSSendDataFinished(String DataItem, ITPDSInputStream out)
 {
 try
 {

67

Kofax Communications Manager Core Developer's Guide

 out.getInputStream().close();
 }
 catch(Exception e)
 {
 }
 }

 }

Methods
The ITPDSDataSender interface includes the following methods.
• ITPDSendData

public ITPDSInputStream ITPDSSendData(java.lang.String DataItem)

This method is called when the KCM Core server executes the ReceiveFile command.

It returns either null to indicate that it does not want to send the data or an ITPDSInputStream object from
which the data will be read.

The returned InputStream object must be wrapped in an ITPDSInputStream object because KCM
Core requires the size of the data to be available before actually sending the data.

The method has one parameter:

1. DataItem. The client parameter as passed in Src(...) Dest(...) of the ReceiveFile
command.

• ITPDSendDataFinished

public void ITPDSSendDataFinished(java.lang.String DataItem,ITPDSInputStream in)

This method is called when sending the data has been finished. When it is called, it means that all data
has been sent to the KCM Core server. It is typically used to close the InputStream object.

It has one parameter:

1. DataItem. The client parameter as passed in Src(...) Dest(...) of the ReceiveFile
command.
in. The ITPDSInputStream object as returned by ITPDSSendData.

ITPDSExchangeData interface
The ITPDSExchangeData interface provides for receiving name-value pair data from the KCM Core
server.

You can use this interface to exchange data through the exchange_data(key, value, time-out)
function.

 import com.aia_itp.itpdsapi.*;

 class MyClass implements ITPDSExchangeData {

68

Kofax Communications Manager Core Developer's Guide

 public String ITPDSExchangeData(String Key, String Value){
 return "my_own_data";
 }

 }

Methods
The ITPDSExchangeData interface has one method, which is
ITPDSExchangeData(java.lang.String ID, java.lang.String Data). This is a public
java.lang.String method.

This method is called when the KCM Core server executes the exchange_data(Key, Value, Time-
out) function call. This method returns an optionally empty string to the server.

It has two parameters:

1. Key. The k parameter as passed in the exchange_data function.

2. Value. The v parameter as passed in the exchange_data function.

ITPDSInputStream class
ITPDSInputStream is a public class that extends java.lang.Object.

java.lang.Object
 |
 +--com.aia_itp.itpdsapi.ITPDSInputStream

This class wraps a normal InputStream object or an object from a derived class, such as
BufferedInputStream, and adds a specification of the size to it.

An ITPDSInputStream object is used when the class implements the ITPDSDataSender interface.

ITPDSInputStream(java.io.InputStream in, int size) is a public constructor that creates an
ITPDSInputStream object and specifies the size.

It has the following parameters:

1. in. Any InputStream (or descendant from InputStream) object.

2. size. Exact size in bytes of the data that KCM Core reads from the InputStream.

Methods
The ITPDSInputStream class has the following methods:
• getInputStream

public java.io.InputStream getInputStream()

Returns the InputStream object specified when creating the ITPDSInputStream object.
• getSize

public int getSize()

69

Kofax Communications Manager Core Developer's Guide

Returns the size specified when creating the ITPDSInputStream object.

ProgressListener interface
The ProgressListener interface provides for receiving progress information from the KCM Core
server.

This interface is used to intercept messages send by the Progress Message(...) command.

import com.aia_itp.itpdsapi.*;

 class MyClass implements ProgressListener {

 public void progressReturned(String message){
 System.out.println(message);
 }

 }

Methods
The ProgressListener interface has one method progressReturned.

public void progressReturned(java.lang.String message)

This method implements the sink for progress messages.

It has the following parameters:
• message. The progress message as passed in the command Progress Message(...).

Web Services interface
You can submit jobs to KCM Core with the KCM Core Web Services interface. KCM Core Web Services
clients use SOAP over HTTP to submit a job to the ASP.NET Web Services interface. This Web Services
interface takes care of unpacking the SOAP message and sending it to KCM Core over a TCP/IP
interface. The Web Services interface is available for both ASP.NET and J2EE.

The following figure represents the architecture of submitting jobs to KCM Core using the KCM Core Web
Services interface.

70

Kofax Communications Manager Core Developer's Guide

ASP.NET implementation
After the installation, you can find the WSDL interface specifications by accessing the following web page:
http://<machinename>:<port>/itpserver/itpserver.asmx

At this URL, a web page is presented with references to WSDL interface specifications for all supported
interface variants.

J2EE implementation
After the installation, you can find the WSDL interface specifications by accessing the following web page:
http://<machinename>:<port>/itpserver

At this URL, a web page is presented with references to WSDL interface specifications for all supported
interface variants.

Interface variants
The KCM Core Web Services interface provides three variants:
• The interface provided through http://.../itpserver/itpserver.asmx uses bare SOAP parameters.
• The interface provided through http://.../itpserver/itpserverwrapped.asmx uses wrapped SOAP

parameters, as for instance required by BizTalk.
• The interface provided through http://.../itpserver/services/ITPServer is provided for backward

compatibility with an earlier J2EE implementation of the KCM Core Web Services interface. This
interface is only available in the J2EE implementation.

Submit a synchronous job to the Web Services interface
This section describes parameters used to submit a synchronous job to the Web Services interface.

71

Kofax Communications Manager Core Developer's Guide

Submit
The job Submit takes the following parameters:
• Service

This is the name of the Service the job is submitted to such as RunMdl.
• Parameters

The parameters for the job. They are passed as a string to the Web Services interface.
• Input files

Input files to send files to KCM Core that you can collect with the ReceiveFile command. The
content of the file as well as an ID are passed. KCM Core can use this ID to collect the file.

• SubmitResult
Contains the answer of KCM Core to the Web Service request. It can contain output files to store files
sent by KCM Core and a string returned by KCM Core, such as for error messages.

You can find the complete WSDL interface specification itpserverwsdl.xml and itpserverwrappedwsdl.xml
in the Manuals folder of your KCM Core installation.

Sample request (bare version)
The following code is a sample bare request.

POST /itpserver/itpserver.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/Submit"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <service xmlns="http://www.aia-itp.com/itpserver/wsdl">string</service>
 <parms xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <string>string</string>
 <string>string</string>
 </parms>
 <inDocuments xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </inDocuments>
 </soap:Body>
</soap:Envelope>

Sample reply (bare version)
The following code is a sample bare reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8

72

Kofax Communications Manager Core Developer's Guide

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <error xmlns="http://www.aia-itp.com/itpserver/wsdl">string</error>
 <outDocuments xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </outDocuments>
 </soap:Body>
</soap:Envelope>

Sample request (wrapped version)
The following code is a sample wrapped request.

POST /itpserver/itpserverwrapped.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/Submit"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Submit xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <service>string</service>
 <parms>
 <parm>string</parm>
 <parm>string</parm>
 </parms>
 <inDocuments>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </inDocuments>
 </Submit>
 </soap:Body>
</soap:Envelope>

Sample reply (wrapped version)
The following code is a sample wrapped reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

73

Kofax Communications Manager Core Developer's Guide

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <SubmitResponse xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <error>string</error>
 <outDocuments>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </outDocuments>
 </SubmitResponse>
 </soap:Body>
</soap:Envelope>

Client.cs offers the function SubmitJob(...) that you can use in a C# environment to create and
unwrap the SOAP messages as well as to post the messages. Wsclient.cs is a sample implementation of
the function SubmitJob(...). These functions are currently only available for the bare version.

SubmitEx
The job SubmitEx is an extension to the job Submit. It allows for communication between the caller and
the KCM Core script. It allows the script to use Progress() to log messages to the caller, and it allows
exchange_data() calls to get and set key/value pairs from/to the client. The job SubmitEx takes the
same parameters as the Submit job plus an array with key/value pairs as an extra parameter.

The job SubmitEx takes the following parameters:

• Service
This is the name of the Service the job is submitted to such as RunMdl.

• Parameters
The parameters for the job. They are passed as a string to the Web Services interface.

• Key/value pairs
Array of key/value pairs that you can collect for the function exchange_data.

• Input files
Input files to send files to KCM Core that can be collected with the ReceiveFile command. The
content of the file as well as an ID are passed. KCM Core can use this ID to collect the file.

SubmitExResult
SubmitExResult contains the answer of KCM Core to the Web Service request. This parameter can
contain the following objects:
• Output files

Files sent by KCM Core are stored here.
• Key/value pairs

The array with the key/value pairs as set in the function call and changed with the function
exchange_data.

74

Kofax Communications Manager Core Developer's Guide

• Progress messages
Result of calls of Progress() by the KCM Core script.

• A string returned by KCM Core, such as, for error messages.

Sample request (bare version)

The following code is a sample bare request.

POST /itpserver/itpserver.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/SubmitEx"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <service xmlns="http://www.aia-itp.com/itpserver/wsdl">string</service>
 <parms xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <string>string</string>
 <string>string</string>
 </parms>
 <inKeyValues xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </inKeyValues>
 <inDocuments xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </inDocuments>
 </soap:Body>
</soap:Envelope>

Sample reply (bare version)

The following code is a sample bare reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <error xmlns="http://www.aia-itp.com/itpserver/wsdl">string</error>
 <outKeyValues xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <KeyValue>
 <key>string</key>

75

Kofax Communications Manager Core Developer's Guide

 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </outKeyValues>
 <outDocuments xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </outDocuments>
 <progress xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <string>string</string>
 <string>string</string>
 </progress>
 </soap:Body>
</soap:Envelope>

Sample request (wrapped version)

The following code is a sample wrapped request.

POST /itpserver/itpserverwrapped.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/SubmitEx"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <SubmitEx xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <service>string</service>
 <parms>
 <parm>string</parm>
 <parm>string</parm>
 </parms>
 <inKeyValues>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </inKeyValues>
 <inDocuments>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>

76

Kofax Communications Manager Core Developer's Guide

 </inDocuments>
 </SubmitEx>
 </soap:Body>
</soap:Envelope>

Sample reply (wrapped version)

The following code is a sample wrapped reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <SubmitExResponse xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <error>string</error>
 <outKeyValues>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </outKeyValues>
 <outDocuments>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </outDocuments>
 <progress>
 <parm>string</parm>
 <parm>string</parm>
 </progress>
 </SubmitExResponse>
 </soap:Body>
</soap:Envelope>

SubmitEx2
The job SubmitEx2 is an extension to the job SubmitEx. It supports Job IDs and Session IDs.
Therefore, the job SubmitEx2 takes the same parameters as the SubmitEx job as well as the following
extra parameters:

• Service
This is the name of the Service the job is submitted to such as RunMdl.

• Parameters
The parameters for the job. They are passed as a string to the Web Services interface.

• Key/value pairs
Array of key/value pairs used for the function exchange_data.

77

Kofax Communications Manager Core Developer's Guide

• Input files
Input files to send files to KCM Core that you can collect with the ReceiveFile command. The
content of the file as well as an ID are passed. KCM Core can use this ID to collect the file.

• Session ID
Used to run a KCM Job in the context of an existing KCM session. If you pass on an invalid Session ID,
KCM Core executes the job, but not in the context of the KCM session.

• Job ID
Used to identify the job in the KCM log files. If you pass on an empty value, the Web Service call
generates a unique Job ID and uses that when it submits the job.

SubmitEx2Result
SubmitEx2Result contains the answer of KCM Core to the Web Service request. It can contain the
following objects:

• Output files
Files sent by KCM Core are stored here.

• Key/value pairs
The array with the key/value pairs as set in the function call and changed with the function
exchange_data.

• Progress messages
Result of calls of Progress() by the KCM Core script.

• A string returned by KCM Core, such as, for error messages.

Sample request (bare version)

The following code is a sample bare request.

POST /itpserver/itpserver.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/SubmitEx2"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <service xmlns="http://www.aia-itp.com/itpserver/wsdl">string</service>
 <parms xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <string>string</string>
 <string>string</string>
 </parms>
 <inKeyValues xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </inKeyValues>
 <inDocuments xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <Doc>

78

Kofax Communications Manager Core Developer's Guide

 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </inDocuments>
 <sessionID xmlns="http://www.aia-itp.com/itpserver/wsdl">string</sessionID>
 <jobID xmlns="http://www.aia-itp.com/itpserver/wsdl">string</jobID>
 </soap:Body>
</soap:Envelope>

Sample reply (bare version)

The following code is a sample bare reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <error xmlns="http://www.aia-itp.com/itpserver/wsdl">string</error>
 <outKeyValues xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </outKeyValues>
 <outDocuments xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </outDocuments>
 <progress xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <string>string</string>
 <string>string</string>
 </progress>
 </soap:Body>
</soap:Envelope>

Sample request (wrapped version)

The following code is a sample wrapped request.

POST /itpserver/itpserverwrapped.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/SubmitEx2"

79

Kofax Communications Manager Core Developer's Guide

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <SubmitEx2 xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <service>string</service>
 <parms>
 <parm>string</parm>
 <parm>string</parm>
 </parms>
 <inKeyValues>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </inKeyValues>
 <inDocuments>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </inDocuments>
 <sessionID>string</sessionID>
 <jobID>string</jobID>
 </SubmitEx2>
 </soap:Body>
</soap:Envelope>

Sample reply (wrapped version)
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <SubmitEx2Response xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <error>string</error>
 <outKeyValues>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </outKeyValues>
 <outDocuments>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>

80

Kofax Communications Manager Core Developer's Guide

 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </outDocuments>
 <progress>
 <parm>string</parm>
 <parm>string</parm>
 </progress>
 </SubmitEx2Response>
 </soap:Body>
</soap:Envelope>

Submit an asynchronous job to the Web Services interface
This section describes parameters used to submit a asynchronous job to the Web Services interface.

SubmitAsync
The job SubmitAsync takes the following parameters:

• Service
The name of the Service the job is submitted to such as RunMdl.

• Parameters
The parameters for the job. They are passed as a string to the Web Services interface.

• Input files
Input files to send files to KCM Core that you can collect with the ReceiveFile command. The
content of the file as well as an ID are passed. KCM Core can use this ID to collect the file.

• SubmitResult
Contains the answer of KCM Core to the Web Service request. It can contain output files to store files
sent by KCM Core and a string returned by KCM Core, such as for error messages.

• CorrelationID
This unique identifier is returned by the Web Services API as part of the returned SOAP message when
a job is finished, so the calling application knows which task has finished.

• ReturnPath
The URL to which the SOAP message is sent after the Web Services API finishes its task.

SubmitAsync responds with OK if execution of the job was scheduled successfully; otherwise, an error
indication is returned. If the job is finished, the results are posted to the URL mentioned in the parameter
ResultPath.

Sample request (bare version)
The following code is a sample bare request.

POST /itpserver/itpserver.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/SubmitAsync"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

81

Kofax Communications Manager Core Developer's Guide

 <soap:Body>
 <service xmlns="http://www.aia-itp.com/itpserver/wsdl">string</service>
 <parms xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <string>string</string>
 <string>string</string>
 </parms>
 <inDocuments xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </inDocuments>
 <correlationId xmlns="http://www.aia-itp.com/itpserver/wsdl">string</correlationId>
 <returnPath xmlns="http://www.aia-itp.com/itpserver/wsdl">string</returnPath>
 </soap:Body>
</soap:Envelope>

Sample reply (bare version)
The following code is a sample bare reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <error xmlns="http://www.aia-itp.com/itpserver/wsdl">string</error>
 </soap:Body>
</soap:Envelope>

Sample request (wrapped version)
The following code is a sample wrapped request.

POST /itpserver/itpserverwrapped.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/SubmitAsync"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <SubmitAsync xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <service>string</service>
 <parms>
 <parm>string</parm>
 <parm>string</parm>
 </parms>
 <inDocuments>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>

82

Kofax Communications Manager Core Developer's Guide

 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </inDocuments>
 <correlationId>string</correlationId>
 <returnPath>string</returnPath>
 </SubmitAsync>
 </soap:Body>
</soap:Envelope>

Sample reply (wrapped version)
The following code is a sample wrapped reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <SubmitAsyncResponse xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <error>string</error>
 </SubmitAsyncResponse>
 </soap:Body>
</soap:Envelope>

SubmitAsync results
To receive SubmitAsync results, a Web Service must implement the function ReplyAsync if the request
was sent using the bare variant (itpserver.asmx), or the function ReplyAsyncWrapped if the request was
sent using the wrapped variant (itpserverwrapped.asmx).

These functions receive the following parameters:
• jobResult

The result/error indication of running the job in the string format.
• OutDocuments

An array of files generated by the KCM Core service.
• CorrelationId

The call identification specified when submitting the job. The function ReplyAsync (wrapped) should
return a result/error string that, except for optional logging, is discarded.

itpserverreply.dll
The itpserverreply.dll file provides a reference implementation that serves to specify the interface. To use
it, do the following:

1. Install the Web Services interface.

2. Browse to the following URLs for sample request and reply messages:

http://<host:port>/<folder>/itpserverreply.asmx?WSDL for the WSDL specification

http://<host:port>/<folder>/itpserverreply.asmx?op=ReplyAsync

http://<host:port>/<folder>/itpserverreply.asmx?op=ReplyAsyncWrapped

83

Kofax Communications Manager Core Developer's Guide

<host:port>/<folder> is the machine/folder in which the Web Services interface is installed, such as
localhost:8080/itpserver.

The Web Service that you implement must adhere to this interface specification.

Sample request (bare version)
The following code is a sample bare request.

POST /itpserver/itpserverreply.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/ReplyAsync"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <jobResult xmlns="http://www.aia-itp.com/itpserver/wsdl">string</jobResult>
 <outDocuments xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </outDocuments>
 <correlationId xmlns="http://www.aia-itp.com/itpserver/wsdl">string</correlationId>
 </soap:Body>
</soap:Envelope>

Sample reply (bare version)
The following code is a sample bare reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <result xmlns="http://www.aia-itp.com/itpserver/wsdl">string</result>
 </soap:Body>
</soap:Envelope>

Sample request (wrapped version)
The following code is a sample wrapped request.

POST /itpserver/itpserverreply.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/ReplyAsyncWrapped"

<?xml version="1.0" encoding="utf-8"?>

84

Kofax Communications Manager Core Developer's Guide

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ReplyAsyncWrapped xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <jobResult>string</jobResult>
 <outDocuments>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </outDocuments>
 <correlationId>string</correlationId>
 </ReplyAsyncWrapped>
 </soap:Body>
</soap:Envelope>

Sample reply (wrapped version)
The following code is a sample wrapped reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ReplyAsyncWrappedResponse xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <result>string</result>
 </ReplyAsyncWrappedResponse>
 </soap:Body>
</soap:Envelope>

SubmitAsyncEx2
The SubmitAsyncEx2 job takes the same parameters as the SubmitEx2 job except the job is submitted
asynchronously. As the job is submitted asynchronously, the call also needs the CorrelationID
parameter and the ReturnPath parameter.

The job takes the following parameters:

• Service
This is the name of the Service the job is submitted to such as RunMdl.

• Parameters
The parameters for the job. They are passed as a string to the Web Services interface.

• Key/value pairs
Array of key/value pairs that are used for the function exchange_data.

• Input files
Input files to send files to KCM Core that you can collect with the ReceiveFile command. The
content of the file as well as an ID are passed. KCM Core can use this ID to collect the file.

85

Kofax Communications Manager Core Developer's Guide

• JobID
The job runs on KCM Core with this ID. If no job ID is passed on, the Web Service API uses a unique
ID, so you can track your job in the KCM Core logs.

• SessionID
The job runs on KCM Core within the context of the KCM session indicated by SessionID. If no valid
SessionID is passed on, KCM Core executes the job.

• CorrelationID
This unique identifier is returned by the Web Services API as part of the returned SOAP message when
a job is finished, so the calling application knows which task has finished.

• ReturnPath
The URL to which the SOAP message is sent after the Web Services API finishes its task.

Sample request (bare version)
The following code is a sample bare request.

POST /itpserver/itpserver.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/SubmitAsyncEx"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <service xmlns="http://www.aia-itp.com/itpserver/wsdl">string</service>
 <parms xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <string>string</string>
 <string>string</string>
 </parms>
 <inKeyValues xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </inKeyValues>
 <inDocuments xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </inDocuments>
 <sessionID xmlns="http://www.aia-itp.com/itpserver/wsdl">string</sessionID>
 <jobID xmlns="http://www.aia-itp.com/itpserver/wsdl">string</jobID>
 <correlationId xmlns="http://www.aia-itp.com/itpserver/wsdl">string</correlationId>
 <returnPath xmlns="http://www.aia-itp.com/itpserver/wsdl">string</returnPath>
 </soap:Body>
</soap:Envelope>

86

Kofax Communications Manager Core Developer's Guide

Sample reply (bare version)
The following code is a sample bare reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <error xmlns="http://www.aia-itp.com/itpserver/wsdl">string</error>
 </soap:Body>
</soap:Envelope>

Sample request (wrapped version)
The following code is a sample wrapped request.

POST /itpserver/itpserverwrapped.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/SubmitAsyncEx2"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <SubmitAsyncEx2 xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <service>string</service>
 <parms>
 <parm>string</parm>
 <parm>string</parm>
 </parms>
 <inKeyValues>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </inKeyValues>
 <inDocuments>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </inDocuments>
 <sessionID>string</sessionID>
 <jobID>string</jobID>
 <correlationId>string</correlationId>
 <returnPath>string</returnPath>
 </SubmitAsyncEx2>
 </soap:Body>

87

Kofax Communications Manager Core Developer's Guide

</soap:Envelope>

Sample reply (wrapped version)
The following code is a sample wrapped reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <SubmitAsyncEx2Response xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <error>string</error>
 </SubmitAsyncEx2Response>
 </soap:Body>
</soap:Envelope>

SubmitAsyncEx2 results
To receive SubmitAsyncEx2 results, a web service must implement the function ReplyAsyncEx2 if the
request was sent using the bare variant (itpserver.asmx), or the function ReplyAsyncEx2Wrapped if the
request was sent using the wrapped variant (itpserverwrapped.asmx).

These functions receive the following parameters:
• jobResult

The result/error indication of running the job (in string format).
• outKeyValues

An array of key/values sent by the KCM Core Service.
• outDocuments

An array of files generated by the KCM Core Service.
• progress

An array of progress messages sent by the KCM Core Service.
• CorrelationId

The call identification that was specified when submitting the job.

The function ReplyAsyncEx2(Wrapped) should return a result/error string that, except for optional
logging, is discarded.

itpserverreply.dll
The itpserverreply.dll file provides a reference implementation that serves to specify the interface. To use
it, do the following:

1. Install the Web Services interface.

88

Kofax Communications Manager Core Developer's Guide

2. Browse to the following URLs for sample request and reply messages:
http://<host:port>/<folder>/itpserverreply.asmx?WSDL for the WSDL specification
http://<host:port>/<folder>/itpserverreply.asmx?op=ReplyAsync
http://<host:port>/<folder>/itpserverreply.asmx?op=ReplyAsyncWrapped
<host:port>/<folder> is the machine/folder in which the Web Services interface is installed, such as
localhost:8080/itpserver.

The Web Service that you implement must adhere to this interface specification.

Sample request (bare version)
The following code is a sample bare request.

POST /itpserver/itpserverreply.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/ReplyAsyncEx2"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <jobResult xmlns="http://www.aia-itp.com/itpserver/wsdl">string</jobResult>
 <outKeyValues xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </outKeyValues>
 <outDocuments xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </outDocuments>
 <progress xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <string>string</string>
 <string>string</string>
 </progress>
 <correlationId xmlns="http://www.aia-itp.com/itpserver/wsdl">string</correlationId>
 </soap:Body>
</soap:Envelope>

Sample reply (bare version)
The following code is a sample bare reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

89

Kofax Communications Manager Core Developer's Guide

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <result xmlns="http://www.aia-itp.com/itpserver/wsdl">string</result>
 </soap:Body>
</soap:Envelope>

Sample request (wrapped version)
The following code is a sample wrapped request.

POST /itpserver/itpserverreply.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://www.aia-itp.com/itpserver/wsdl/ReplyAsyncEx2Wrapped"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ReplyAsyncEx2Wrapped xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <jobResult>string</jobResult>
 <outKeyValues>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </outKeyValues>
 <outDocuments>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 <Doc>
 <id>string</id>
 <content>base64Binary</content>
 </Doc>
 </outDocuments>
 <progress>
 <string>string</string>
 <string>string</string>
 </progress>
 <correlationId>string</correlationId>
 </ReplyAsyncEx2Wrapped>
 </soap:Body>
</soap:Envelope>

Sample reply (wrapped version)
The following code is a sample wrapped reply.

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

90

Kofax Communications Manager Core Developer's Guide

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ReplyAsyncEx2WrappedResponse xmlns="http://www.aia-itp.com/itpserver/wsdl">
 <result>string</result>
 </ReplyAsyncEx2WrappedResponse>
 </soap:Body>
</soap:Envelope>

Sample clients for synchronous and asynchronous jobs
Sample clients for a synchronous job and asynchronous job (wsasyncclient) submission are provided
in the client folder that resides in: {path}\APIs\Web Services\Sample Client. These clients
demonstrate how to call KCM Core with the Web Services interface using the bare variant.

If you want to use a sample client, you need to install the .NET Framework on the machine used to run the
sample client.

To use a sample client, the following parameters need to be provided:
• Services address. This is the address of the Web Services server.
• Service. The name of the Service called.
• Parameters. Parameters needed for the particular Service.
• Upload file. Optional. File that needs to be sent from the client to KCM Core.
• File ID. Required when the Upload file parameter is used. ID for the file sent from the client. This ID can

be used by the Service to collect the file sent with the Upload file parameter.

Compatibility interfaces
This section provides information on the interfaces provided for backward compatibility with an earlier
J2EE implementation of the KCM Core Web Services interface. These interfaces are only available in the
J2EE implementation of the KCM Core Web Services interface with the URL http://.../itpserver/services/
ITPServer.

Note The interfaces described in the following sections are for reference purpose only and should not be
used in new implementations.

SubmitEx
The job SubmitEx takes the following parameters:

• Service
The name of the Service the job is submitted to such as RunMdl.

• Parameters
The parameters for the job. They are passed as a string to the Web Services interface.

• Key/value pairs
Array of key/value pairs used for the function exchange_data.

• Input files
Input files to send files to KCM Core that can be collected with the ReceiveFile command. The
content of the file as well as an ID are passed. KCM Core can use this ID to collect the file.

91

Kofax Communications Manager Core Developer's Guide

• Job ID
The job runs on KCM Core with this ID. If no job ID is passed on, the Web Service API uses a unique
ID, so you can track your job in the KCM Core logs.

SubmitExResult
SubmitExResult contains the answer of KCM Core to the Web Service request. It can contain the
following objects:

• Output files
Files sent by KCM Core are stored here.

• Key/value pairs
The array with the key/value pairs as set in the function call and changed with the function
exchange_data.

• Progress messages
Result of calls of Progress() by the KCM Core script.

• A string returned by KCM Core, such as, for error messages.

Sample request for SubmitEx
The following code is a sample SubmitEx request.

POST /itpserver/services/ITPServer HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: ""

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsdl="http://wsdl.aia_itp.com">
 <soapenv:Header/>
 <soapenv:Body>
 <wsdl:SubmitEx>
 <wsdl:service>string</wsdl:service>
 <wsdl:parms>
 <wsdl:string>string</wsdl:string>
 <wsdl:string>string</wsdl:string>
 </wsdl:parms>
 <wsdl:inKeyValues>
 <wsdl:KeyValue>
 <wsdl:key>string</wsdl:key>
 <wsdl:value>string</wsdl:value>
 </wsdl:KeyValue>
 <wsdl:KeyValue>
 <wsdl:key>string</wsdl:key>
 <wsdl:value>string</wsdl:value>
 </wsdl:KeyValue>
 </wsdl:inKeyValues>
 <wsdl:inDocuments>
 <wsdl:Doc>
 <wsdl:content>base64Binary</wsdl:content>
 <wsdl:id>string</wsdl:id>
 </wsdl:Doc>
 </wsdl:inDocuments>
 <wsdl:jobID>string</wsdl:jobID>
 </wsdl:SubmitEx>
 </soapenv:Body>

92

Kofax Communications Manager Core Developer's Guide

</soapenv:Envelope>

Sample reply for SubmitEx

The following code is a sample SubmitEx reply.

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soap:Body>
 <SubmitExResponse xmlns="http://wsdl.aia_itp.com">
 <SubmitExResult>
 <error>OK</error>
 <outDocuments>
 <Doc>
 <content>base64Binary</content>
 <id>string</id>
 </Doc>
 </outDocuments>
 <outKeyValues>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </outKeyValues>
 <progress>
 <string>string</string>
 <string>string</string>
 </progress>
 </ns1:SubmitExResult>
 </ns1:SubmitExResponse>
 </soap:Body>
</soap:Envelope>

SubmitEx2
The SubmitEx2 job takes the same parameters as the SubmitEx job as well as an extra string
parameter to indicate in which session the job should run.

The job SubmitEx2 takes the following parameters:

• Service
This is the name of the Service the job is submitted to such as RunMdl.

• Parameters
The parameters for the job. They are passed as a string to the Web Services interface.

• Key/value pairs
Array of key/value pairs that are used for the function exchange_data.

• Input files
Input files to send files to KCM Core that can be collected with the ReceiveFile command. The
content of the file as well as an ID are passed. KCM Core can use this ID to collect the file.

93

Kofax Communications Manager Core Developer's Guide

• Session ID
Used to run a KCM Job in the context of an existing KCM session. If you pass on an invalid Session ID,
KCM Core executes the job, but not in the context of the KCM session.

• Job ID
Used to identify the job in the KCM log files. If you pass on an empty value, the Web Service call
generates a unique Job ID to use when it submits the job.

SubmitEx2Result
SubmitEx2Result contains the answer of KCM Core to the Web Service request. This parameter can
contain the following objects:
• Output files

Files sent by KCM Core are stored here.
• Key/value pairs

The array with the key/value pairs as set in the function call and changed with the function
exchange_data.

• Progress messages
Result of calls of Progress() by the KCM Core script.

• A string returned by KCM Core, such as for error messages.

Sample request for SubmitEx2
The following code is a sample SubmitEx2 request.

POST /itpserver/services/ITPServer HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: ""

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsdl="http://wsdl.aia_itp.com">
 <soapenv:Header/>
 <soapenv:Body>
 <wsdl:SubmitEx2>
 <wsdl:service>string</wsdl:service>
 <wsdl:parms>
 <wsdl:string>string</wsdl:string>
 <wsdl:string>string</wsdl:string>
 </wsdl:parms>
 <wsdl:inKeyValues>
 <wsdl:KeyValue>
 <wsdl:key>string</wsdl:key>
 <wsdl:value>string</wsdl:value>
 </wsdl:KeyValue>
 <wsdl:KeyValue>
 <wsdl:key>string</wsdl:key>
 <wsdl:value>string</wsdl:value>
 </wsdl:KeyValue>
 </wsdl:inKeyValues>
 <wsdl:inDocuments>
 <wsdl:Doc>
 <wsdl:content>base64Binary</wsdl:content>
 <wsdl:id>string</wsdl:id>
 </wsdl:Doc>

94

Kofax Communications Manager Core Developer's Guide

 </wsdl:inDocuments>
 <wsdl:sessionID>string</wsdl:sessionID>
 <wsdl:jobID>string</wsdl:jobID>
 </wsdl:SubmitEx2>
 </soapenv:Body>
</soapenv:Envelope>

Sample reply for SubmitEx2

The following code is a sample SubmitEx2 reply.

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soap:Body>
 <ns1:SubmitExResponse xmlns="http://wsdl.aia_itp.com">
 <SubmitExResult>
 <error>OK</error>
 <outDocuments>
 <Doc>
 <content>base64Binary</content>
 <id>string</id>
 </Doc>
 </outDocuments>
 <outKeyValues>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 <KeyValue>
 <key>string</key>
 <value>string</value>
 </KeyValue>
 </outKeyValues>
 <progress>
 <string>string</string>
 <string>string</string>
 </progress>
 </ns1:SubmitExResult>
 </ns1:SubmitExResponse>
 </soap:Body>
</soap:Envelope>

Directory Watch interface client
You can instruct KCM Core to watch a specific folder for jobs to be processed. You submit jobs by copying
files to, or writing files in, this folder. KCM Core must be allowed to access the watched folder. You can
use this interface if your application can copy files to the watched folder or create files in the watched
folder in an NT domain.

95

Kofax Communications Manager Core Developer's Guide

Install the KCM Core Directory Watch interface
To install the KCM Core Directory Watch Interface, proceed with the following steps.

1. Create a Windows Service by running the following command from the folder …/Apis/
DirectoryWatch:
ITPDirWatch -install <server> <user> <password>

This table provides a description of the parameters used in the installation command.

Name Description

<server> The name of the KCM Core installation where the
KCM Core Directory Watch Client must submit its
requests to.

<user> The account under which the KCM Core Directory
Watch client must be run.

<password> The password for the <user> account.

Note If <user> and <password> are omitted, the KCM Core Directory Watch Client interface is
configured to run under the Local System account. If the KCM Core configuration is stored on a
network drive, the KCM Core Directory Watch Client must be configured to run as a user profile
with a network privileges.

2. The KCM Core Directory Watch Client service is installed under the name "Aia CCM Core<server>
Directory Watch Client" and configured to automatically start after a reboot.

Note The Directory Watch Client service only starts if a valid ITPDirWatch.ini configuration file is
present in the ITPWORK\Config folder. See Configure the KCM Core Directory Watch interface for
more details on how to configure the KCM Directory Watch interface.

3. After a valid ITPDirWatch.ini file is created, start the KCM Core Directory Watch Client service from
the Windows Service Manager or reboot the server.

Configure the KCM Core Directory Watch interface
The KCM Core Directory Watch interface is implemented as a Windows Service that monitors one or more
folders and submits synchronous requests to KCM Core based on these files. You can specify a separate
folder for every KCM Core Service in the KCM Core Directory Watch interface.

Starting and stopping the Service

Currently no user interface is provided for the KCM Core Directory Watch interface. You can start and/or
stop the Windows Service through the Windows Service Manager.

The Service is configured to start automatically when the server is rebooted.

Connecting to KCM Core

96

Kofax Communications Manager Core Developer's Guide

The KCM Core Directory Watch interface retrieves the connection configuration from the KCM Core
configuration and does not require any additional setup.

Handling connection failures

If the KCM Core Directory Watch interface fails to connect to KCM Core, it logs an error and retries
submitting the job until it is accepted. If the job cannot be submitted due to a configuration error, the job is
rejected as a failure.

Number of connections

If there are sufficient jobs queued, the KCM Core Directory Watch interface submits two jobs per licensed
KCM Document Processor simultaneously. If the license is issued for an unlimited number of KCM
Document Processors, the number of simultaneous requests is limited to two jobs per CPU core on KCM
Core.

You can explicitly set the number of simultaneous requests to 2 * n by adding the setting
ScalingMaxDP=n to the [Configuration] section of the DP.INI file.

Configure watched directories
The KCM Core Directory Watch interface can watch one folder for every KCM Core Service. This
configuration is stored in the ITPDirWatch.ini file. This file must be located in the configuration folder of the
KCM Core instance.

Each Service is described in a separate section in the ITPDirWatch.ini file.

[<service>:Service]
ServiceType=<type>
WatchedDirectory=<folder>

<service> Name of the KCM Core Service that the request is submitted to.

<type> Type of interface. Allowed values are Document or Control Data.

<folder> Folder monitored for jobs.

The KCM Core Directory Watch interface shuts down if the KCM Core instance does not provide the
configured Service.

ServiceType parameter values
ServiceType=Document

In a Document Service, the file to be processed is placed directly into the watched folder. The KCM
Core Directory Watch interface passes the name of this file directly to KCM Core. KCM Core scripts have
access to this parameter as the $0 parameter or through the _jobid variable.

ServiceType= Control Data

In a Control Data service, a file with parameters is placed into the watched folder. The KCM Core
Directory Watch interface reads the parameters from this file and passes them directly to KCM Core.
KCM Core scripts can access these parameters through the $1 … $n parameters. The name of the file is
passed as the $0 parameter or through the _jobid variable.

97

Kofax Communications Manager Core Developer's Guide

A parameter file has the following format.

nnnnn
parameter 1
parameter 2
parameter 3

The first line contains the number of parameters, padded on the left with zero ("0") characters to 5
positions. The following lines contain each one parameter, up to the number of parameters specified on
the first line.

Example parameter file is as follows.

00002
First parameter
Second parameter

This format is compatible with the Control Data interface used by KCM Core.

Sample ITPDirWatch.ini file
The following examples define two watched folders.

[ConvertDocument:Service]
ServiceType=Control Data
WatchedDirectory = d:\DirWatch\ConvertDocument

The folder d:\DirWatch\ConvertDocument is monitored for parameter files. If such a file is placed
in this folder, the file is read and its contents are submitted in a job to the ConvertDocument Service of
KCM Core.

[Archive:Service]
ServiceType = Document
Watched Directory = d:\DirWatch\Archive

The folder d:\DirWatch\Archive is monitored for documents, which are then submitted to the
Archive Service of KCM Core. The name of the file is passed to the Service.

Locate log files
The KCM Core Directory Watch interface uses the logging settings of the KCM Core installation it is
connecting to.

Logs are written to the shared folder of KCM Core and stored in the ITPDirWatch [[server]] folder.

Uninstall the KCM Core Directory Watch interface
To uninstall the KCM Core Directory Watch Interface, proceed with the following steps.

1. Stop the KCM Core Directory Watch interface client from the Windows Service Manager.

98

Kofax Communications Manager Core Developer's Guide

2. Remove the Service from Windows.
To do so, run the following command line from the installation folder.
 ITPDirWatch -remove <server>

<server> is the name of the KCM Core instance where the KCM Core folder Watch interface must
submit its requests to.

3. After the Service is removed from Windows, remove the installation folder.

MQSeries interface
The KCM Core MQSeries interface is implemented as a Windows Service that monitors an MQSeries
queue and submits synchronous requests to KCM Core through that MQSeries Queue.

For information on MQSeries, see the MQSeries documentation available on the Internet.

Install the KCM Core MQSeries interface
To install the KCM Core MQSeries Interface, proceed with the following steps.

1. Create a Windows Service by running the following command from the folder …/Apis/MQSeries:
ITPMQSeries [-cfg <config>] -install <server> [<user> <password>]

This table provides a description of the parameters used in the installation command.

Name Description

<server> The name of the KCM Core installation where the
KCM Core MQSeries interface must submit its
requests to.

<user> The account under which the KCM Core MQSeries
interface must be run.

<password> The password for the <user> account.

<config> The name of an alternative configuration file. This
parameter should be used when multiple MQSeries
interface Services are installed.

Note If <user> and <password> are omitted, the KCM Core MQSeries interface is configured to run
under the Local System account. If the KCM Core configuration is stored on a network drive, the
KCM Core MQSeries interface must be configured to run as a user profile with network privileges.

2. The KCM Core MQSeries interface service is installed under the name "Aia CCM Core <server>
MQSeries Client" and configured to automatically start after a reboot.

Note If an alternative configuration is specified, the name of this file is added to the name of the
service to distinguish multiple instances.

99

Kofax Communications Manager Core Developer's Guide

3. Start the KCM Core MQSeries interface Service from the Microsoft Windows Service Manager or
reboot the server.

Configure the MQSeries interface
Currently, no user interface is provided for the KCM Core MQSeries interface. You can start and/or stop
the Windows Service through the Windows Service Manager.

The Service is configured to start automatically when the server is rebooted, but it must be started by
hand when first created.

MQSeries interface functionality
The MQSeries interface is implemented as a Windows Service that reads requests from an MQSeries
queue and forwards them to KCM Core over its TCP/IP interface. Once installed for a particular KCM
Core instance, it automatically detects the TCP/IP interface. You only need to configure MQSeries specific
settings.

The MQSeries interface shuts down automatically if it is unable to access the request queue because of a
permanent error. If the MQSeries interface is unable to access the request queue because of a temporary
error, the MQSeries interface attempt to reestablish its connection to the request queue. In this case,
you may receive a "queue is unavailable" error. The interval between reconnection attempts starts at 5
seconds and increases up to 60 seconds when the request queue is unavailable for a longer amount of
time.

You can install multiple MQSeries interface Services. Each Service can read from different MQSeries
queues on different queue managers.

Concurrent requests

The MQSeries interface can have as many requests active at any point in time as the number of licensed
KCM Document Processors. Provided that all KCM Document Processors are running, this ensures
that as many requests as possible are handled concurrently. If fewer processors are running, some of
the active MQSeries jobs are queued at KCM Core for processing. The latter has consequences for the
MQSeries priority mechanism, so you should always start all available KCM Document Processors.

If the license is issued for an unlimited number of KCM Document Processors, the number of
simultaneous requests is limited to one job per CPU core on the KCM Core. You can explicitly
set the number of simultaneous requests to n by adding the setting ScalingMaxDP=n to the
[Configuration] section of the DP.INI file.

Priorities

The KCM Core MQSeries interface supports priority queues. In order for KCM Core to get priority
messages as soon as possible, you should have as many Document Processors running as the KCM
license allows, or at least as many as the number of CPU cores on the system if you have a license for an
unlimited number of Document Processors.

High priority messages cannot interrupt running KCM Core jobs, so there may be some delay in the
MQSeries queue.

100

Kofax Communications Manager Core Developer's Guide

Each KCM Core MQSeries interface only monitors a single queue. If multiple KCM Core MQSeries
interfaces are configured to monitor priority queues, the priorities are only observed between jobs from the
same queue. Jobs from different priority queues are not ordered relative to each other.

Syncpoint control

KCM Core requests are handled under MQSeries syncpoint control. As a result, requests are handled as
an atomic transaction for as far as MQSeries communication is concerned. Furthermore, if the interface
cannot deliver a request to KCM Core, it is backed out so that it can be processed later.

In all but one case, if a job does get delivered to KCM Core and it fails, it will not be backed out and a
failure will be reported. A job only gets backed out after being delivered to KCM Core when the MQSeries
interface ends abnormally.

Note If KCM Core itself ends abnormally during execution of a job, the MQSeries interface reports an
error.

If the MQSeries interface is stopped in a regular way, it does not accept new jobs and waits for all
running submitted jobs queued by KCM Core to complete. If all KCM Document Processors are down, it
waits indefinitely until either a least one KCM Document Processor gets started and handles the jobs or
the KCM Core is shut down. In the latter case, all jobs are backed out.

MQSeries configuration
KCM Core Administrator does not support MQSeries configuration. The MQSeries interface has its own
mq.ini file in the config folder of the corresponding KCM Core installation. All settings are stored in the
[Configuration] section. You can edit this file with a text editor such as Notepad.

You can install multiple instances of the KCM Core MQSeries interface where each instance has its own
configuration file. The settings in these configuration files are identical to those in the mq.ini file.

The following settings exist:
• Queue

The MQSeries queue that the interface is listening to for requests.
Type. Required setting.
Value. The name of an MQSeries queue.

• Queue manager
The MQSeries queue manager that manages all queues used by the MQSeries interface.
Type. Optional setting.
Value. The name of an MQSeries queue manager.
Default value. The default queue manager. You can use the MQSeries administration tools to set the
default queue manager.

• Timeout
This setting specifies the timeout value in milliseconds that the interface uses to retrieve jobs from
the specified MQSeries queue. If you set a timeout value to n, KCM Core may only detect special

101

Kofax Communications Manager Core Developer's Guide

circumstances, such as a shutdown request, after n milliseconds. You should set an adequate timeout
value.
Type. Optional setting.
Value. Any positive timeout value in milliseconds.
Default value. 1000, which is 1 second.

• Client
If this setting is set to Y, it forces the interface to link to the MQSeries client DLL at start-up. If it is set to
N, it first tries to link to the server DLL, and if this fails, it tries to link to the client DLL.
Type. Optional setting.
Value. Y or N.
Default value. N.

• Connection
This setting specifies the TCP/IP connection name of a MQSeries server. This is either the hostname
or the network address of the remote machine. This setting is only considered if the interface links to
the MQSeries client DLL and a client connection channel name has been specified. If so, these settings
specify to which remote MQSeries server this Service will connect to retrieve jobs. If the interface links
to the MQSeries server DLL, it always connects to the local MQSeries server.
Type. Optional setting. This setting controls the connection settings for the MQSeries interface of this
KCM Core installation.
Value. Any TCP/IP connection name.
Default value. Empty.

• Channel
This setting is only considered if the MQSeries interface links to the MQSeries client DLL and a
connection name has been specified. If so, these settings specify to which remote MQSeries server the
interface connects to retrieve jobs. If the interface links to the MQSeries server DLL, it always connects
to the local MQSeries server.
Type. Optional setting. This setting controls the connection settings for the MQSeries interface of this
KCM Core installation.
Value. Any client connection channel name.
Default value. Empty.

• Request version
You can use this setting to control the version level for reading messages from a queue. Level 2 is the
default. You can specify version 1 here for backward compatibility.
Type. Optional setting.
Value. 1 or 2.
Default value. 2.

MQSeries protocol
This section describes how you can submit requests to KCM Core over MQSeries message queues.

102

Kofax Communications Manager Core Developer's Guide

Submit jobs
For every job that you want to submit, you should at least perform the following steps:

1. Connect to the queue manager that manages the request queue.

2. Open the request queue for output.

3. Put one or more request messages on the request queue. Each message specifies a single request.

4. Close the request queue.

5. Disconnect from the queue manager.

This protocol allows you to submit several jobs over a single queue. The same queue can be used
simultaneously by a number of clients. The steps above only describe the most basic form of interaction
with KCM Core through MQSeries. Any client that has the MQSeries middleware installed can send
requests to KCM Core, provided that it has sufficient access rights.

MQSeries queues and requests
An MQSeries queue has to be created on the server. This queue has to be configured so that clients can
send requests over it.

Each MQSeries request consists of a single message containing a character string. This string encodes
all request parameters and may use any code page for which MQSeries for NT supports conversion to
Unicode (KCM Core uses Unicode internally). This usually means that the local code page of the sending
application can be used. The only requirements are as follows:
• The CodedCharSetId attribute in the MQSeries message descriptor must be set to the used code

page. If the local code page is used, the default MQSeries descriptor settings automatically indicate the
correct code page.

• The Format attribute in the MQSeries message descriptor must be set to MQFMT_STRING to enable
automatic conversion of the request string by MQSeries.

Request format
The MQSeries interface for KCM Core supports two different formats for job submission: a coded string or
an XML message.
• Coded string

Each request is specified as a single string of characters that has the following format.

 <s><JobIdentifier><s><Service><s>[<parameter1><s>...]

Where <s> is a single character that does not occur in the parameter data. Both the job identifier and
the Service name may not be empty and the request must end with the separator. The parameters are
optional. The separator can be any character except a NULL character ("\0"), because the MQSeries code
page translation treats a NULL character as the end of the string.

Example

 #ITP Job#runmdl#order#

103

Kofax Communications Manager Core Developer's Guide

In this example, the # character is used as the separator.
• XML message

Each request is put in an XML message. The content of the message is mostly free, however, the
interface looks for an <itp:job> element containing the job submission information. This element has
the following format.

<?xml version="1.0" ?>
<itp:job version="1" id="jobid">
 <itp:service>service name</itp:service>
 <itp:parameters>
 <itp:parameter>parameter 1 data</itp:parameter>
 <itp:parameter>parameter 2 data</itp:parameter>
 …
 </itp:parameters>
</itp:job>

jobid with the identification of the job.

service name with the name of the service to call.

parameter n data with the value of the nth parameter.

Note The XML message should start with <?xml. <?xml has to be the first five characters in the
request string; otherwise, the request fails.

Request parameters
For MQSeries each request contains the following parameters. Unlike the TCP/IP protocols, there is
no need to include the user id as a parameter as MQSeries already includes this information in each
message.
• Job identifier

Every job that you submit must have a non-empty identifier. It is used for progress messages, but not
internally for identification of request messages. This means that job identifiers do not necessarily have to
be unique.
• Service

The second parameter is also required and contains the name of the Service that you want to run.
• Optional parameters

Every job that you submit can have zero or more additional parameters. In the KCM Core administration
program, you define how these parameters are mapped to script parameters. When the mapping contains
more parameters than those specified in a job, these parameters are assumed to be undefined.

Invalid requests
If a request uses a code page that MQSeries cannot convert to Unicode, or if it does not conform to the
request format, KCM Core rejects the request. It logs the error and does one of the following:
• By default, KCM Core moves the request to the dead-letter queue of the queue manager that manages

the request queue. If no dead-letter queue has been specified, the request is removed from the request
queue.

104

Kofax Communications Manager Core Developer's Guide

• If the MQRO_DISCARD_MSG option is used in the Report field of the request message descriptor, the
message is removed from the request queue.

In both cases, a negative action notification is sent to the client if it requested this. This notification
contains the reason that the message was rejected.

Action notifications
Although the MQSeries interface is asynchronous, the client can receive action notifications back from
KCM Core over a reply queue. In order to do this, the client has to set the ReplyToQMgr and ReplyToQ
fields in the descriptor of the request message and set the type of the message to MQMT_REQUEST.
Action notifications have type MQMT_REPORT, format MQFMT_STRING, and one of the following
feedback codes:

1. MQFB_PAN. A Positive Action Notification. These messages are sent after the request has been
processed successfully, but only if the MQRO_PAN option was used in the Report field of the request
message descriptor. If sent, no more report messages are sent for this particular request. Positive
action notifications contain a string that indicates that the job has completed successfully.

2. MQFB_NAN. A Negative Action Notification. These messages are sent after a failure, but only if the
MQRO_NAN option was used in the Report field of the request message descriptor. If sent, no more
report messages are sent for this particular request. Negative action notifications contain a Unicode
message string that explains what went wrong.

Apart from these KCM Core related reports, the options in the Report field of the request message
descriptor may be used to control the following:
• Report messages generated by MQSeries such as confirmation of delivery. These messages are only

delivered after the job is finished and committed.
• The contents of MsgId and CorrelId fields in progress messages. You can use these identifiers to relate

report messages to the original request.

Note No negative action notifications are sent if KCM Core shuts down in a normal way. It waits for
running jobs to complete. Jobs that have not yet begun executing are backed out to the request queue,
so that they can be processed at another time.

Progress messages
The MQSeries interface only logs progress messages. Unlike KCM Core Services, it does not return
them to the client, because they are incompatible with syncpoint control. With syncpoint control, progress
messages can only be delivered to the client at the end of a job.

File transfers
Whenever KCM Core encounters a SendFile or ReceiveFile instruction, it either sends the contents of
a file to the specified queue or retrieves a message from the specified queue and stores it in a file. For
the description of these commands, see Kofax Communications Manager Core Scripting Language
Developer's Guide.

The instruction SendFile recognizes the special queue *REPLYQ. If this queue is used as destination in
the script, the message is put on the queue that was specified in the ReplyQ/ReplyQMgr attributes of the
job.

105

Kofax Communications Manager Core Developer's Guide

KCM Core does not request the client for particular file transfers. The client must ensure that it puts all
data on one or more queues at the start of the job. Only after the job has ended and committed, the client
will be able to read back result data.

If intermediate interaction with the client is required, you should split up a job in to several transactions.

Uninstall a Service
To uninstall a Service, proceed with the following steps.

1. Start the Windows Service Manager.

2. Stop the KCM Core MQSeries interface Service.

3. To remove the Service, execute the following command line from the installation folder.
 ITPMQSeries -remove <server> [-cfg <config>]

<server> is the name of the KCM Core installation where the KCM Core MQSeries interface must
submit its requests to. <config> is the alternative configuration file. The -cfg parameter is required
if this KCM Core MQSeries interface is configured to use an alternative configuration file.

4. After all Services are removed, remove the installation folder.

XML metadata from template runs
Apart from the result document, KCM Core is able to generate an XML file containing metadata about the
template run. You can use this data for post-processing.

You cannot generate an XML file with metadata for Document Pack Templates and for Document
Templates with OutputMode set to "pack".

For more information, see the section on the ITPRun command in the Kofax Communications Manger
Core Scripting Language Developer's Guide.

XML metadata content
The XML file contains data concerning the template run itself. This data is added automatically to the file.
It includes the following items:
• The template used
• Time the document is generated
• Keys and extras
• KCM version used to run the template
• The full name (including path) of the result document
• The user who requested creation of the document, and the user account that actually ran KCM

These items are added to the element <ccm:meta> in the document.

Additionally, information on the Forms encountered in the template is listed in the element <itp:forms>.
This element contains the answers that the user provided on all questions posed by the template in
Forms. Forms that were not executed, or questions not answered, are not included.

106

Kofax Communications Manager Core Developer's Guide

When one of the Form questions is the TEXTBLOCK type, the answer to this question is represented
as a Text Block reference ID. The actual XML of the Text Block is represented using a top-level element
<ccm:user-textblock>, which specifies the same reference ID as used in the Form.

Additionally, information on the Content Wizards encountered in the template is listed in the element
<ccm:wizard>. This element contains the mandatory Sections and Text Blocks defined in a Content
Wizard. It also contains the Sections and Text Blocks that were selected in the Content Wizard selection
dialog during execution of the Content Wizard. Content Wizards that were not executed are not included.

Apart from the information stored in the XML file by KCM itself, the template is also able to add custom
information. The Field Set _Document is available for this purpose. Values added to this Field Set are
listed in a special Document section in the metadata XML. The function add_user_xml that was used for
the same purpose has been deprecated.

An example of a resulting XML file is provided below. Line breaks and layout are added for clarity and not
necessarily part of an actual XML metadata file.

<?xml version="1.0" encoding="UTF-8"?>
<ccm:data xmlns:itp="http://www.aia-itp.com/4.2/formsData/">
 <ccm:meta>
 <ccm:date>2018-03-01T11:33:26</ccm:date>
 <ccm:result>result document</ccm:result>
 <ccm:model>template</ccm:model>
 <ccm:producer>user account running CCM Core (DP)</ccm:producer>
 <ccm:itp-version>5.2</ccm:itp-version>
 <ccm:user>user for who the template was executed</ccm:user>
 <ccm:job-id>job id</ccm:job-id>
 <ccm:keys>
 <ccm:key>first key</ccm:key>
 <ccm:key>second key</ccm:key>
 </ccm:keys>
 <ccm:extras>
 <ccm:extra>first extra</ccm:extra>
 <ccm:extra>second extra</ccm:extra>
 </ccm:extras>
 <ccm:Template>
 <ccm:label name="Wizard">A Content Wizard</ccm:label>
 <ccm:label name="Category">Letter</ccm:label>
 </ccm:Template>
 <ccm:Document>
 <ccm:label name="CustomerId">100042/ccm:label>
 <ccm:label name="OutputFormat">PDF/A</ccm:label>
 </ccm:Document>
 </ccm:meta>
 <ccm:forms>
 <ccm:form>
 <ccm:name>name</ccm:name>
 <ccm:group shown="Y">
 <ccm:name>group name</ccm:name>
 </ccm:group>
 <ccm:element>
 <ccm:key>title</ccm:key>
 <ccm:value>TRUE</ccm:value>
 </ccm:element>
 <ccm:element>
 <ccm:key>title</ccm:key>
 <ccm:value>314</ccm:value>
 </ccm:element>
 <ccm:element>
 <ccm:key>title</ccm:key>
 <ccm:value>some text</ccm:value>

107

Kofax Communications Manager Core Developer's Guide

 </ccm:element>
 <ccm:element>
 <ccm:key>Clause A001</ccm:key>
 <ccm:id>A001</ccm:id>
 <ccm:value>user:01c86735f934361b00000e70.1</ccm:value>
 </ccm:element>
 <ccm:recordset>
 <ccm:record>
 <ccm:element>
 <ccm:key>title</ccm:key>
 <ccm:value>some text</ccm:value>
 </ccm:element>
 </ccm:record>
 </ccm:recordset>
 <ccm:button>Ok</ccm:button>
 </ccm:form>
 <ccm:user-textblock id="user:01c86735f934361b00000e70.1">
 <ccm:content><textblock><content><tbk xsv="2.0.1"><par
 font="header" indentation="0" hanging-indentation="false"><txt
 bold="false" italic="false" underline="false" id=""><![CDATA[Clause
 A001]]></txt></par><par font="normal" indentation="0" hanging-
indentation="false"><txt bold="false" italic="false" underline="false"
 id=""><![CDATA[Any damages that are the consequence of terrorism
 are explicitly excluded and will not be covered by this policy.]]></
txt></par></tbk></content><fieldset>Customer</
fieldset><fieldset>Policy</fieldset></textblock></ccm:content>
 </ccm:user-textblock>
 </ccm:forms>
 <ccm:wizards>
 <ccm:wizard>
 <ccm:name>Content Wizard name</ccm:name>
 <ccm:section>
 <ccm:name>Section name</ccm:name>
 <ccm:section>
 <ccm:name>Section name</ccm:name>
 <ccm:section>
 <ccm:name>Section name</ccm:name>
 <ccm:textblock>
 <ccm:name>Text Block name</ccm:name>
 </ccm:textblock>
 </ccm:section>
 <ccm:textblock>
 <ccm:name>Text Block name</ccm:name>
 </ccm:textblock>
 </ccm:section>
 <ccm:textblock>
 <ccm:name>Text Block name</ccm:name>
 </ccm:textblock>
 </ccm:section>
 </ccm:wizard>
 </ccm:wizards>
</ccm:data>

The schema of the XML generated is provided in the file history.xsd in the Manuals directory of the KCM
Core installation.

Produce XML metadata
By default, KCM Core does not produce an XML metadata file for a template run. To generate an XML
metadata file, specify a file name for the parameter MetaData of the script command ITPRun. Likewise,
the Service RunMdl has a parameter MetaData with the same meaning. When using KCM ComposerUI

108

Kofax Communications Manager Core Developer's Guide

Server, the XML metadata file is always generated. The path to the generated XML metadata file is
passed to the exit points ProcessResult and ModelRunCompleted. For more information about these
exit points, see the section "KCM Core: OnLine exit points" in the legacy Kofax Communications Manager
ComposerUI for ASP.NET Developer's Guide.

Identify Forms and questions
The IDs of Forms and questions are included in the metadata XML. The KCM Repository Form Editor
enables you to change both Form and question IDs. It is also possible to define Form and Question
IDs in the FORM statement of the Template scripting language. For more information, see the Kofax
Communications Manager Template Scripting Language Developer's Guide.

A business application that integrates KCM can identify Forms and questions that have been filled with
answers during a template run in the metadata XML by their IDs. The Form Editor generates unique
random IDs initially when saving a new Form. It also does this when saving existing Forms that have no
IDs yet. Manually entered IDs are easier to locate in the metadata XML and allow for easier integration.
For more information, see the next section.

Form and question IDs
The Form ID offers a unique reference to a Form. You can use question IDs in a similar way to give
unique references to questions. Although the initially generated Form and question IDs are unique, KCM
Repository does not check this after manually changing IDs.

These IDs are related to the Suspend and Resume functionality, because modifications to questions and
Forms have implications for the persisted data of suspended sessions. Form IDs can also be used to
identify a Form in the Metadata, similar to question IDs for questions.

Until a Form ID is changed, questions in that Form are matched based on their ID. Changes to templates
and Forms while a template run is suspended does not necessarily require answering previously
answered Forms. Previously entered answers are restored when a template run is resumed by mapping
answers to questions with the same ID. For more information on Suspend and Resume functions, see
"Suspend and Resume" section in the Kofax Communications Manager ComposerUI for ASP.NET
Developer's Guide. For more information on when questions and Forms must be answered again, see
the "Changing Forms during suspension" section in the Kofax Communications Manager ComposerUI for
ASP.NET Developer's Guide.

Automatically generated and manually entered IDs are not automatically changed if a question in a Form
is changed. To ensure that an already answered Form is presented again after a resume, the Form or
question ID has to be changed manually in the QForm Editor.

KCM Core Text Block XML format
The KCM Core Text Block XML format defines custom Text Blocks. These Text Blocks are intended to be
authored by external applications. You can retrieve them from a database and insert into documents using
the read_text_block_from_file and import_text_block_base64 functions.

109

Kofax Communications Manager Core Developer's Guide

XML reference
KCM Core Text Block XML objects are only allowed to use a subset of the XML specification:
• The XML must be encoded in either UTF-8, UTF-16 or iso-8859-1. Other encodings are not supported.
• Namespace prefixes are not allowed. A default xmlns namespace declaration is ignored.
• Boolean values must be specified as either true or false. Other xsd:boolean values (0, 1, True, False)

are not supported.

KCM Core Text Block XML elements
Header

<tbk xsv='2.2.0'>
 <par ...> ... </par>
 <lst ...> ... </lst>
 <tbl ...> ... </tbl>
 ...
</tbk>

The required xsv attribute specifies the version of the KCM Core Text Block XML format. This must be
version 2.2.0.

The content of the Text Block is a sequence of one or more paragraphs, lists, and tables.

Note KCM Repository and KCM Core can expose Text Block XML files where the xsv attribute refers
to older versions of the Text Block XML format. The 2.0.x and 2.1.x versions are a subset of the 2.2.0
format, and you can treat these versions as if they were saved as version 2.2.0. Version 1 is completely
incompatible and should be rejected.

Paragraphs

The paragraph element represents a logical paragraph and the attributes that apply to this paragraph. The
attributes are mapped to styles in Microsoft Word.

<par font='normal' indentation='0' hanging-indentation='false'>
 <txt ...> ... </txt>
 <chr .../>
 <fld ...> ... </fld>
 ...
</par>

All of the following attributes are required:
• font defines the style in which the paragraph is represented. Allowed values are normal for regular

text and header for highlighted text.
• indentation defines the indentation level of the paragraph. Every level shifts the paragraph one tab

stop to the right.
• hanging-indentation indicates whether or not the first line of the paragraph should start one tab

stop to the left of the other lines. Allowed values are true or false.

The content of the paragraph is a sequence of zero or more text runs, special characters and KCM Core
data fields.

110

Kofax Communications Manager Core Developer's Guide

All elements in the paragraph require the boolean attributes bold, italic, and underline. These
attributes control the font attributes of the rendered text and expect the values true and false.

The paragraph attributes only provide context hints to the intended layout. The style sheet defines the
actual visualization of the styles.

Text elements

A text element represents a simple run of text.

Note All white space between the <txt> and </txt> tags is significant.

<txt bold='false'
 italic='true'
 underline='false'><![CDATA[This is some formatted text.]]></txt>

Character elements

A character element represents a control character.

<chr type='NBSP' bold='false' italic='true' underline='true'/>

All attributes are required.

The type attribute expresses the type of control character. Supported values are the following:
• TAB is a Tab character.
• LBR is a soft line break (Shift+Enter in Microsoft Word).
• NBSP is a non-breakable space.
• NBHH is a non-breakable hyphen.

Field elements

The field element is used to insert a value from the Data Backbone into the result document.

The specific Field Set that provides the value is resolved at run time when the Content Wizard determines
in which context the Text Block is used.

<fld bold='false' italic='true' underline='false' set='Customer'>Name</fld>

All attributes are required.

The set attribute defines the Field Set and the content of the tag defines the field that will be retrieved.
Both references are case-sensitive and must match the definition in the KCM Repository exactly.

List elements

The list element represents a list of paragraphs and lists where every element is shown as an item.

<lst style='ordered'>
 <par ...> ... </par>
 <lst ...> ... </lst>
 ...
</lst>

All attributes are required.

111

Kofax Communications Manager Core Developer's Guide

The style attribute defines one of the following types of list that will be rendered:
• ordered defines a numbered list.
• unordered defines a bulleted list.

The style attributes only provide context hints to the intended layout. The style sheet defines the actual
visualization of the list.

Lists are allowed to be nested. Every nested list automatically increases the nesting level by one.

Table elements

Note Table elements are currently only supported in the context of Microsoft Word DOCX projects.

The table element represents a simple table in the Text Block. This table is restricted to a fixed number of
rows and columns.

<tbl>
 <prp ... > ... </prp>
 <row>
 <col>
 </col>
 ...
 </row>
 ...
</tbl>

Each cell in the table may contain a sequence of paragraphs and lists. Tables cannot be nested.

Table properties

The property element defines the format and layout of the table.

<prp nrows='10'
 ncols='3'
 header-row='false' footer-row='true'
 first-column='false' last-column='false'
 autosize='false'>
 <col width='1440'/><!-- one inch -->
 <col width='567'/><!-- one centimeter -->
 ...
</prp>

The following attributes are required:
• nrows defines the number of rows in the table.
• ncols defines the number of columns in every row.

The following attributes are optional:
• header-row

• footer-row

• first-column

• last-column
These four attributes determine whether special formatting rules from the Microsoft Word style must be
applied to the indicated row or column. If one of these values is set to true, the exception is applied to
that row or column.

112

Kofax Communications Manager Core Developer's Guide

• autosize instructs Microsoft Word to enable or disable the autosizing of the table. If autosize is
set to true, Microsoft Word automatically sizes the table based on the content of the cells and any
<col .../> column definitions are ignored.

The <col .../> elements define the width of the columns if the autosize attribute is not present or set to
false. If the table is manually sized there must be a <col width='...' /> element for every column.
The width is specified in units of 1440th of an inch (twips).

Rows

The row element defines a row of cells in the table. The number of <row> elements must exactly match
the nrows attribute of the table.

Cells

The cell element defines a cell in a row. The number of <col> elements in every row must exactly match
the ncols attribute of the table.

<col>
 <par ...> ... </par>
 <lst ...> ... </lst>
 ...
</col>

A cell contains a sequence of one or more paragraphs and lists. It is not possible put a table within
another table cell.

113

Chapter 13

Information for system administrators

This chapter provides information necessary for system administrators.

Assign the Log on as a Service right to a user
The user profile that runs the KCM Core NT Services needs to have the rights to log on as a Service.
To assign the "Log on as a Service" right to a user profile, use the Local or Domain Security settings in
Windows.

The administrator can assign this privilege directly to a user profile or to a group where it transfers to the
members of the group.

Ensure that the assigned right does not conflict with the "Deny login as a service" setting.

Manage the configuration file
KCM Core creates an KCM configuration file. We recommend that you do not make any changes to the
file. However, if required, you can modify the file.

KCM Core uses a default configuration file itp.cfg to run and create templates. This configuration file is
located in the Config folder for each KCM Core instance.

This section describes the most important KCM Core configuration settings. If you need to change any
setting, proceed to the steps below.

1. Navigate to <deploy root>\KCM\Work\5.5\Instance_<number>\core\Config and open
the itp.cfg text file.

2. Add a setting and a value to the following setting.

ITPLAZYPOSTINC=Y

114

Kofax Communications Manager Core Developer's Guide

Note A few defaults that KCM Core uses cannot be overwritten. KCM Core always use its own defaults
for these settings. Changing these settings breaks KCM Core. Do not change the following settings:
• ITPDIR

• ITPPROGDIR

• ITPDIDDIR

• ITPTMPDIR

• ITPERRORDIR

• ITPDMINIFILE

• ITPDATAMAN_SERVER_NAME

• ITPMODDOCDIR

• ITPMODDIR

• ITPRESDIR

ITPVALIDATEFIELDSET=N

You can configure KCM Core to validate at run time that all Fields in a Field Set variable are filled before
using this Field Set. If a Field is not filled, the process fails. This validation is disabled by default. For more
information, see Word processing settings.

ITPLANGMODDOC=ENG

With this setting you can specify the language used for the Template Scripting language keywords and
standard functions. You can choose between English (ENG), German (DEU), and Dutch (NLD).

ITPINCLUDEPATH

By default, KCM Core searches pre-includes in the templates/Includes folder in the ITPWORK folder. You
can change this default.

ITPLAZYPOSTINC=Y and ITPPOSTINC=Y

By default, post-includes are enabled in lazy mode. This mode switches post-includes on when the
@(inc(…)) method is used. Under most circumstances, these values produce the desired result. If
the __INC expressions in the result document are not produced using the @(inc…)) function, the
configuration file must be adapted to include the documents; ITPLAZYPOSTINC must be set to N. For
more information, see Additional settings.

Note ITPPOSTINC=Y is necessary for ITPLAZYPOSTINC to function. If you do not use post-includes in
your Template script, you can set ITPPOSTINC to N.

ITPEURO

If this setting is set to Y, the amount_in_words function uses the euro as currency. If this setting is set to
N or not present, the amount_in_words function uses a local currency. This setting can be overridden
by the use of the euro function. Default is N. For more information, see Additional settings.

ITPALLOWMISSINGINC

115

Kofax Communications Manager Core Developer's Guide

Controls whether a missing __INC document causes an error when translating a template. If this setting is
set to Y, KCM removes the __INC() statement and continues translating. If this setting is set to N, KCM
reports an error and stops the translation. Default is N.

ITPALLOWMISSINGPOSTINC

Controls whether a missing __INC document causes an error when executing the post-include on a
result document. If this setting is set to Y, KCM silently removes the __INC() statement and continues to
operate. If this setting is set to N, KCM reports an error. Default is N. For more information, see Additional
settings.

ITPUNICODEEURO

Enables the functionality to translate single byte euro character to Unicode euro character. Default is N.
For more information, see Additional settings.

ITPCURRENCYEURO

Enables the functionality to translate the International Currency Symbol to Unicode Euro characters.

Default is N. For more information, see Additional settings.

ITPDMRESTARTTIMEOUT

This is an ITP/(OnLine)Server-specific setting.

KCM Core restarts the Data Manager process if the credentials or environment change. By default, KCM
Core waits 1000 msec until the Data Manager terminates and reports the EVL7102 message if after the
timeout Data Manager is still busy. This setting allows you to set the timeout before the restart of the Data
Manager. Default is 1000 msec.

ITPREPRETRY

Controls how long KCM Core attempts to connect to an unavailable Editorial Repository.

By default, KCM Core attempts for approximately 150 seconds to reconnect if the Editorial
Repository is shut down or when an existing connection is disrupted. This setting has the format
ITPREPRETRY=ia,id,na,nc.

ia is a number of connection attempts for interactive template runs. Set this value to 0 to disable
reconnection attempts.

id is a delay (in seconds) between connection attempts for interactive template runs.

na is a number of connection attempts for non-interactive model runs. Set this value to 0 to disable
reconnection attempts.

nd is a delay (in seconds) between connection attempts for non-interactive model runs.

KCM Core adds an additional small random delay between connection attempts to desynchronize multiple
KCM Document Processors. The built-in connection retry feature in Windows also introduces additional
delays, which depend on Windows TCP/IP configuration parameters and networking performance.

You should combine this setting with the job timeout feature of KCM Core. The default value is
15,10,15,10.

116

Kofax Communications Manager Core Developer's Guide

An example is provided here.

ITPRETRY=0,0,15,10

The preceding example setting disables reconnection attempts for interactive model runs and keeps the
default for non-interactive model runs. This setting is available from KCM Core 4.4. For more information,
see Additional settings.

ITPDISABLEPROJECTCONSTRAINT

This setting controls whether a KCM Core model or session can use dynamic content from a single project
or from multiple projects.

As of KCM Core 4.4, dynamic content is restricted to a single project by default. Default is N.

This setting is available from KCM Core 4.4. For more information, see Additional settings and Word
processing settings.

117

Appendix A

Word processing settings

The following table describes the settings that affect the result document.

Settings Default Description

ITPCOMPATIBLEFIELD N Enable this setting to avoid handling
KCM instructions within Word fields.

ITPCOMPATIBLEFORM N Enable this setting to avoid handling
KCM instructions within Word Form
fields.

ITPEXPANDVISFIELD Y Disable this setting to deactivate
handling of KCM instructions within
the visible part of Word fields.

ITPCOMPATIBLEBOOKMARKS N Enable this setting to deactivate the
range support of bookmarks.

ITPINCLUDELEVEL 16 Maximum number of nested
documents allowed when using the
built-in __INC(…) support.

ITPWFWSUBDOCS N Enable this setting to have the
built-in __INC(…) support include
subdocuments into a Master
Template document.

ITPSTYLESHEET none When a Master Template is run, the
styles of the document set in this
setting are used in any post-include
document and in the document as a
whole.
The setting applies only to Word.

ITPLABELDOCUMENTS none Specifies the directory where the
stylesheet and pagestyle functions
expect their template documents.

118

Kofax Communications Manager Core Developer's Guide

Settings Default Description

ITPLISTSUPPORT N When a Master Template is run, this
setting produces the result document
in a way that Word renumbers all
bullets/numbered lists when the
document is opened.
If the Master Template is created
with this option enabled, a bullet/
numbering gallery is also included in
the result document. The gallery data
is necessary to prevent Word from
changing the bullet/numbering style
when a user edits the document.

ITPCOMPRESSLISTS Y Use of this setting during Master
Template execution has the same
effect as the ITPLISTSUPPORT
setting.

119

Appendix B

Additional settings

The following table describes other settings that you might need to configure the run Master Template and
create Master Template processes.

Settings Default Description

ITPRUNDATARETRIEVAL N If this setting is disabled, the Master
Template loads the Data Backbone
from an XML file or runs the Data
Retrieval part of the Data Backbone.
Set this option to Y to run the Data
Retrieval part of the Data Backbone
always, even if the Data Backbone is
already loaded from an XML file.

ITPDIDCP System code page of the AS/400 Code page of the ITP/SDK DID files.

ITPEURO N If this setting is set to Y, the
amount_in_words function uses
the euro as currency. If this setting
is set to N or not present, the
amount_in_words function uses the
local currency. This setting can be
overridden by the use of the euro
function.

ITPALLOWMISSINGOSTINC N Controls whether a missing __INC
document causes an error when
executing the post-include on a result
document. If this setting is set to Y,
KCM silently removes the __INC()
statement and continues. If this
setting is set to N, KCM reports an
error.

ITPLAZYPOSTINC N If this setting is set to Y
(ITPLAZYPOSTINC=Y), it suppress
the processing of post-includes if
the result document contains no
include instructions produced with
the inc(...; ...) function. This feature
is only implemented for Word Master
Template documents.

ITPUNICODEEURO N Enable on a global level the
functionality to translate single byte
euro characters to Unicode euro
characters. Only supported for Word.

120

Kofax Communications Manager Core Developer's Guide

Settings Default Description

ITPCURRENCYEURO N Enable on a global level the
functionality to translate the
International Currency Symbol to
Unicode euro characters. Only
supported for Word.

The next settings affect the amount of memory the KCM Core Word processor support uses and the way it
handles temporary files.

The Word Support produces a large number of temporary files for administrative purposes. With the
default settings only a few of these files should ever exceed the default ITPOUTPUTCACHE setting.
Increasing either ITPOUTPUTCACHE and/or ITPMAXTMPOPEN can improve performance while
producing large result documents.

Settings Default Description

ITPMAXINPUTCACHE 1024 Sets the maximum amount of
memory in KB that the KCM Core
Word processor support uses while
reading a file. If files exceed this size,
KCM reads only as much of the file
as fits in this size and updates from
the disk if it needs other parts of the
file.

Note This setting affects the
amount of memory that the KCM
Core Word processor support
uses during translation and
execution of a Master Template.

ITPOUTPUTCACHE 256 Sets the maximum amount of
memory in KB that the KCM Core
Word processor support can use
while writing a file. If the file exceeds
this size, KCM moves parts of the file
to the disk.

Note This setting affects the
amount of memory that KCM
Core Word processor support
uses during execution of a
Master Template.

ITPMAXTMPOPEN 1 Sets the number of temporary files
kept open simultaneously.
If the size of an output file
exceeds the size indicated with
ITPOUTPUTCACHE, this file is
moved to the disk.

ITPMAXINPUTCACHE primarily affects performance during the post-include process.

121

Kofax Communications Manager Core Developer's Guide

ITPOUTPUTCACHE and ITPMAXTMPOPEN affect performance during the Master Template run process
and post-include process.

Note The effect of assigning more memory with the ITPOUTPUTCACHE setting should be primarily
noticeable while producing large result documents on a system that has sufficient hardware resources
available

Settings Default Description

ITPEVALTIMEOUT 3 seconds This setting determines the amount
of time in seconds that the Master
Template runs. If the Master
Template does not finish running
within this time, it returns the
EXIT_TIMEOUT (11) return code.
The active communications, such as
database access, are subsequently
stopped after 3 seconds by default.
This time can be influenced with the
ITPEVALGRACE setting.

ITPEVALGRACE 3 seconds This setting determines the amount
of time in seconds that KCM
waits for active communications
to complete before it terminates
itself. Only useful in combination
with the time restriction of running
a Master Template set with the
ITPEVALTIMEOUT setting.

ITPVALIDATEFIELDSET N KCM Core can be configured to
validate at runtime that all fields
in a FIELDSET variable are filled
before using this FIELDSET. If a field
is empty, the run Master Template
process fails. This validation is
disabled by default.

The following settings affect KCM Core runtime behavior when using dynamic content.

122

Kofax Communications Manager Core Developer's Guide

Settings Default Description

ITPREPRETRY 15,10,15,10 This setting determines whether or
not KCM Core attempts to reconnect
to an unavailable KCM Repository.
The first pair of numbers is the
number of connection attempts
and the delay between connection
attempts in seconds for interactive
Master Template runs. The second
pair of numbers is the same for non-
interactive runs. Set the number of
connection attempts to 0 to disable
any recovery attempts.
We recommend that you combine
this setting with the job timeout
feature of KCM Core.

ITPDISABLEPROJECTCONSTRAINT N This setting controls whether KCM
Core is restricted to dynamic content
from a single project or if it can
retrieve dynamic content from
multiple projects.
Change this setting to Y for
compatibility with KCM Repository
3.5 projects that use library projects.

123

	Table of Contents
	Preface
	Related documentation
	Getting help with Kofax products

	Introduction to the functionality
	KCM Core Services
	Add a Service to create a script

	Requirements for printer drivers
	Amyuni printer drivers
	Reinstall Amyuni printer drivers
	Switch to an older Amyuni version

	Log and setup reports
	Watcher and CM Document Processor Manager log
	Change the size limit of the log file
	Error messages
	Location of the log files
	CM Document Processor Manager example log
	CM Document Processor example log

	Read performance statistics from logs
	STATS: lines processing

	Notifications
	Monitor and Watcher
	Monitor functionality
	Monitor application
	HTTP Monitor application

	Watcher functionality

	Security issues
	External interface
	Grant or restrict network access

	Adjust internal interface settings

	Job recovery
	Component Object Model resources for job recovery

	Document composition
	Environments
	ITPRun command
	Use a rep:/ URl to create a document
	Keys and extra parameters
	Enable DisablePostIncludes
	Specify the environment
	IBM i connection parameters
	Data Backbone XML setting
	OutputMode setting
	Master Templates running in a sandbox content
	Closed Loop Identifier

	RunDocumentPackTemplate Service
	RunMdl Service
	Test a template

	KCM Core scripts
	Create and deploy a Core scripting library

	Job scheduling
	Scheduled jobs
	Exit points
	Downtime and clock changes
	Time zones and daylight saving time
	Interactive scheduling
	Jobs scheduling on all KCM Document Processors

	Integration
	APIs and Java classes
	TCP/IP API for Microsoft Windows
	SSubmitJob function
	SSubmitJobMsg function
	SSubmitJobEx4 and SSubmitJobEx5 functions
	SUBMITJOB4 and SUBMITJOB5
	ValidateFileName
	ExchangeData
	Error codes
	Saclient.exe and swclient.exe

	.NET library
	.NET library installation and distribution
	Aia.ITP.Server.Job class
	Job method
	Submit () method
	SubmitAsync () method
	ExchangeData event
	FileDownload
	FileUpload
	ProgressMessage

	TCP/IP for the IBM i platform
	REQHST file
	XCHGFIL file
	XCHGPGM exit program

	Java submission interface
	Job class
	Methods

	ITPDS class
	Fields

	ITPDSDataReceiver interface
	Methods

	ITPDSDataSender interface
	Methods

	ITPDSExchangeData interface
	Methods

	ITPDSInputStream class
	Methods

	ProgressListener interface
	Methods

	Web Services interface
	ASP.NET implementation
	J2EE implementation
	Interface variants
	Submit a synchronous job to the Web Services interface
	Submit
	Sample request (bare version)
	Sample reply (bare version)
	Sample request (wrapped version)
	Sample reply (wrapped version)

	SubmitEx
	SubmitExResult
	Sample request (bare version)
	Sample reply (bare version)
	Sample request (wrapped version)
	Sample reply (wrapped version)

	SubmitEx2
	SubmitEx2Result
	Sample request (bare version)
	Sample reply (bare version)
	Sample request (wrapped version)
	Sample reply (wrapped version)

	Submit an asynchronous job to the Web Services interface
	SubmitAsync
	Sample request (bare version)
	Sample reply (bare version)
	Sample request (wrapped version)
	Sample reply (wrapped version)
	SubmitAsync results

	itpserverreply.dll
	Sample request (bare version)
	Sample reply (bare version)
	Sample request (wrapped version)
	Sample reply (wrapped version)

	SubmitAsyncEx2
	Sample request (bare version)
	Sample reply (bare version)
	Sample request (wrapped version)
	Sample reply (wrapped version)
	SubmitAsyncEx2 results

	itpserverreply.dll
	Sample request (bare version)
	Sample reply (bare version)
	Sample request (wrapped version)
	Sample reply (wrapped version)

	Sample clients for synchronous and asynchronous jobs
	Compatibility interfaces
	SubmitEx
	SubmitExResult
	Sample request for SubmitEx
	Sample reply for SubmitEx

	SubmitEx2
	SubmitEx2Result
	Sample request for SubmitEx2
	Sample reply for SubmitEx2

	Directory Watch interface client
	Install the KCM Core Directory Watch interface
	Configure the KCM Core Directory Watch interface
	Configure watched directories
	ServiceType parameter values
	Sample ITPDirWatch.ini file
	Locate log files
	Uninstall the KCM Core Directory Watch interface

	MQSeries interface
	Install the KCM Core MQSeries interface
	Configure the MQSeries interface
	MQSeries interface functionality

	MQSeries configuration
	MQSeries protocol
	Submit jobs
	MQSeries queues and requests
	Request format
	Request parameters
	Invalid requests
	Action notifications
	Progress messages
	File transfers
	Uninstall a Service

	XML metadata from template runs
	XML metadata content
	Produce XML metadata
	Identify Forms and questions

	Form and question IDs
	KCM Core Text Block XML format
	XML reference
	KCM Core Text Block XML elements

	Information for system administrators
	Assign the Log on as a Service right to a user
	Manage the configuration file

	Word processing settings
	Additional settings

